ICP Assignment 	Individual Assignment	1 | Page

[image: C:\Documents and Settings\Deepak\My Documents\Downloads\images.jpg][image: C:\Documents and Settings\Deepak\My Documents\Visual Studio 2008\Projects\library management system (final)\library management system (final)\Resources\staffordshireUniversityLogo.gif]

Module – Introduction to C Programming
“Create Pattern, Print Series, Work with Records, Use Numeric Functions, Work with Arrays”
Module Code – CE00312-1-ICP
sourceiran.com

ACKNOWLEDGEMENT

//___ Blank Page ___//

Table of Contents

	
Chapter Number
	Chapter Name
	Page Number

	1.
	Introduction
	4

	2.
	Pseudocode
	6

	3.
	C programming concepts
	9

	4.
	User Guide
	20

	5.
	Limitation and future enhancement
		23	

	6.
	Test plan
	29

	7.
	Conclusion
	30

	8.
	References
	33

	
	Appendix
	50

	
	Source Code
	51

Chapter 1 – Introduction
The objective of this assignment is to develop a menu driven application that will enable the user to use its different features to print various series, work with records and arrays, create patterns, use number functions and exit the application.
The application should provide the following options in the main menu, however this menu is further classified into another menus:-
· Create Pattern
· Print Series
· Work with Records
· Use Numeric Functions
· Work with arrays
· Exit
1. Create Pattern:
After selecting this option, menu will be provided for the following sub options:
· Pyramid of Asterisks
· Pyramid of Numbers
· Square of Asterisks
User will enter the sub-option and based upon it the following steps will execute
· Pyramid of asterisks –
System will ask for the number of rows of pattern from the user and will display the pattern accordingly. E.g. if user enter 5 the following pyramid will get printed on the screen.
	*
**

· Pyramid of numbers –
System will ask for the number of rows of pattern from the user and will display the pattern accordingly e.g. if user enters 5 the following pyramid will get printed on the screen.
	54321
5432
543
54
5

· Square of asterisks –
System will ask for the number of rows of pattern from the user and will display the pattern accordingly. E.g. if user enters 5 the following square will get printed on the screen.

2. Print Series –
After selecting this option, menu will be provided for the following sub options.
· Series of Armstrong numbers between 1 and 500.
· Fibonacci series from 1 to 100 using recursion.
· Series of prime numbers from 1 to 100.
 User will be asked to choose the sub-option and based upon that the result will be displayed on the screen.
3. Work with Records –
After selecting this option, menu will be provided for the following sub options.
· Enter and Display Employee Information
· Find Grade for a student
User will be asked to choose the sub-option and based upon that the following steps should execute:
1. Enter and Display Employee Information –
In this option, array of structures should be used to hold employee information like employee code, name etc. User will enter the information of three employees and after that system will display the information of all the three employees on the screen
2. Find Grade for a student –
In this option, system will accept roll number, name and total marks of a student and will display roll number, name and grade. A criteria for finding the grade is as follows:
If Marks >=70 grade is A
If Marks between 60 and 69 grade is B
 If Marks between 50 and 59 grade is C
 If Marks <50 grade is D
4. Use Numeric Functions
After selecting this option, menu will be provided for the following sub options.
1. Factorial of a number using while loop
2. Sum of first and fifth digit of a 5 digit number.
3. Find out whether a 5 digit number is palindrome or not.
After selecting the sub-option, user will be asked to enter the appropriate number and the calculations will be performed accordingly.
5. Work with Arrays –
After selecting this option, menu will be provided for the following sub options.
1. Count number of vowels in the sentence.
2. Copy the contents of an array into another.
3. Delete item from an array.
 After selecting the sub-option, user will be asked to enter the size of the array for the option 2 and 3, after that appropriate array will be entered and result will be displayed accordingly. Maximum size of the array will be 100.
6. Exit –
This option is used to exit from the system.

Assumptions –
· For question number 2 –
· It is assumed that no input is required to print Armstrong, Fibonacci, and Prime number series. User will select the feature and appropriate result would be displayed on the screen.
· For question number 3 –
· It is assumed that the marks of the student cannot be greater than 100.
· Employee name, employee code, student name and student code are limited to 30 characters.
· For question number 5 –
· The size of the array is limited to 100 characters and it is assumed that if the user enters the size more than 100 an error message should be displayed on the screen.		

Chapter 2 – Pseudocode
1. START
2. Display “C Application”
3. Display “1. Create Pattern”
4. Display “2. Print Series”
5. Display “3. Work with Records”
6. Display “4. Use Numeric Functions”
7. Display “5. Work with Arrays”
8. Display “6. Exit”
9. Read choice
10. CONDITION choice OF
CONDITION ‘1’ : Create_Pattern()
		CONDITION ‘2’ : Print_Series()
		CONDITION ‘3’ : Work_Records()
		CONDITION ‘4’ : Numeric_Functions()
CONDITION ‘5’ : Work_Arrays()
		CONDITION ‘6’ : Exit()
11. STOP

Create_Pattern()
1. START
2. Display “C Application”
3. Display “1. Pyramid of Asterisk”
4. Display “2. Pyramid of Numbers”
5. Display “3. Square of Asterisk”
6. Display “4. Main Menu”
7. Read choice
8. CONDITION choice OF
CONDITION ‘1’ : Asterisk_Pyramid()
		CONDITION ‘2’ : Numbers_Pyramid()
		CONDITION ‘3’ : Asterisk_Square()
		CONDITION ‘4’ : break
9. STOP
Asterisk_Pyramid()
1. START
2. DISPLAY “Enter the number of rows of pattern to be printed : ”
3. READ numberofrows
4. INITIALIZE i ← 0, j ← 0
5. FOR i ← 1 to numberofrows STEP 1
	 DISPLAY new line
 FOR j ← 1 to i STEP 1
 DISPLAY ‘*’
	 NEXT
NEXT
6. STOP

Number_Pyramid()
1. START
2. DISPLAY “Enter the number of rows of pattern to be printed : ”
3. READ numberofrows
4. INITIALIZE i ← 0, j ← 0
5. FOR i ← 1 to numberofrows STEP 1
	 DISPLAY new line
 FOR j ← 1 to i STEP 1
 DISPLAY j
	 NEXT
 NEXT
6. STOP

Asterisk_Square()
1. START
2. DISPLAY “Enter the number of rows of pattern to be printed : ”
3. READ numberofrows
4. INITIALIZE i ← 0, j ← 0
5. FOR i ← 1 to numberofrows STEP 1
	 DISPLAY new line
 FOR j ← 1 to i STEP 1
 DISPLAY j
	 NEXT
 NEXT
6. STOP

Print_Series()
1. START
2. Display “C Application”
3. Display “1. Print Armstrong numbers from 1 to 500”
4. Display “2. Print Fibonacci series from 1 to 100”
5. Display “3. Print Prime number series from 1 to 100”
6. Display “4. Main Menu”
7. Read choice
8. CONDITION choice OF
CONDITION ‘1’ : Armstrong_Series()
		CONDITION ‘2’ : Fibonacci_Series()
		CONDITION ‘3’ : Prime_Series()
		CONDITION ‘4’ : break
9. STOP

Armstrong_Series()
1. START
2. Clear Screen
3. DISPLAY “C Application”
4. DISPLAY “Armstrong numbers between 1 and 500”
5. INITIALIZE armstrongnumber ← 0, originalnumber ← 0, remain ← 0, tempnumber ← 0
6. FOR originalnumber ← 1 to 500 STEP 1
tempnumber ← originalnumber
armstrongcheck ← 0
WHILE(tempnumber <> 0)
	remainder ← tempnumber % 10
	tempnumber ← tempnumber / 10
	armstrongnumber = armstrongnumber + remain * remain * remain
	originalnumber ← originalnumber + 1
END WHILE

IF (armstrongnumber = originalnumber) THEN
	DISPLAY armstrongnumber
END IF
	NEXT
10. STOP
Fibonacci_Series()
1. START
2. DISPLAY “Fibonacci Series from 1 to 100”
3. DISPLAY Fibonacci_Series_Recursive(0, 1)
4. STOP
Function Fibonacci_Series_Recursive : argument first, second
1. START
2. IF ((first + second) > 100) THEN
return second
	ELSE
		DISPLAY second
Fibonacci_Series_Recursive(0, 1)
END IF
5. STOP
Prime_Series()
1. START
2. DISPLAY new line
3. DISPLAY “Prime numbers from 1 to 100 : ”
4. INITIALIZE number ← 0, counter ← 0, countmultiples ← 0
5. FOR counter ← 2 to 100 STEP 1
number ← counter
countmultiples ← 0
FOR j ← 2 to counter – 1 STEP 1
	IF ((number % j) = 0) THEN
		countmultiples ← countmultiples + 1
	END IF
NEXT
IF (countmultiples = 0) THEN
	DISPLAY number
END IF
	NEXT
6. STOP

Numeric_Functions()
1. START
2. Display “C Application”
3. Display “1. Calculate the factorial of a number”
4. Display “2. Calculate the sum of first and fifth digit of a 5 digit number”
5. Display “3. Check whether a 5 digit number is palindrome or not”
6. Display “4. Main Menu”
7. Read choice
8. CONDITION choice OF
CONDITION ‘1’ : Factorial()
		CONDITION ‘2’ : Digit_Sum()
		CONDITION ‘3’ : Palindrome_Number()
		CONDITION ‘4’ : break
9. STOP

Factorial()
1. START
2. Clear Screen
3. DISPLAY “Enter the number : ”
4. Read number
5. INITIALIZE counter ← 0, factorial ← 1
6. FOR I ← 1 to number STEP 1
factorial = factorial * I
	NEXT
7. DISPLAY “Factorial of” number “is” factorial
8. STOP
		
Digit_Sum()
1. START
2. Clear Screen
3. DISPLAY “Enter the 5 digit number : ”
4. Read number
5. INITIALIZE tempnumber ← number, count ← 0, remain ← 0, sum ← 0
6. WHILE(tempnumber <> 0)
tempnumber ← tempnumber / 10
count = count + 1
	END WHILE
7. IF (count > 5) THEN
DISPLAY “Number should be of 5 digit only”
	ELSE
		tempnumber ← number
		count ← 0
		WHILE (tempnumber <> 0)
			count ← count + 1
			remain ← tempnumber % 10
			tempnumber ← tempnumber / 10
			IF ((count = 1) OR (count = 5)) THEN
				sum = sum + remain
			END IF
		END WHILE
	END IF
8. STOP

Palindrome_Number()
1. START
2. Clear Screen
3. DISPLAY “Enter the 5 digit number : ”
4. Read number
5. INITIALIZE tempnumber ← number, place ← 1, count ← 0, remain ← 0, finalnumber ← 0
6. WHILE(tempnumber <> 0)
remain ← tempnumber % 10
tempnumber ← tempnumber / 10
count ← count + 1
finalnumber = finalnumber * place + remainder
place ← place * 1
	END WHILE
7. IF (count > 5) THEN
DISPLAY “Number should be of 5 digit only”
	ELSE
		IF (finalnumber = number) THEN
			DISPLAY number “ is a 5 digit palindrome number”
		ELSE
			DISPLAY number “ is not a 5 digit palindrome number”
		END IF
	END IF
8. STOP

Work_Records()
1. START
2. Clear screen
3. Display “C Application”
4. Display “1. Enter and display employee information”
5. Display “2. Calculate the grade”
6. Display “3. Main Menu”
7. Read choice
8. CONDITION choice OF
CONDITION ‘1’ : Employee_Information()
		CONDITION ‘2’ : Calculate_Grade()
		CONDITION ‘3’ : break
9. STOP

Record employeeinformation(name, code, age)
Employee_Information ()
1. START
2. INITIALIZE counter ← 0, emprecord[3]
3. FOR counter ← 1 to 3 STEP 1
Read empname
emprecord[counter].name ← empname

Read empcode
emprecord[counter].code ← empcode

Read empage
emprecord[counter].age ← empage
	NEXT
4. FOR counter ← 1 to 3 STEP 1
DISPLAY “Employee Number : ” counter
DISPLAY emprecord[counter].name
DISPLAY emprecord[counter].code
DISPLAY emprecord[counter].age
	NEXT
5. STOP

Calculate_Grade()
1. START
2. DISPLAY “Enter the marks of the student : ”
3. READ marks
4. IF marks > 100 THEN
DISPLAY “Marks cannot be greater than 100”
	ELSE
		DISPLAY “Enter Student Name : ”
		READ studentname
		IF (marks >= 70) THEN
			grade ← ‘A’
		ELSE IF ((marks >= 60) AND (marks <=69)
			grade ← ‘B’
		ELSE IF ((marks >= 50) AND (marks <=59)
			grade ← ‘C’
		ELSE
			grade ← ‘D’
		END IF
		DISPLAY “Student Name : ” studentname
		DISPLAY “Marks Scored : ” marks
		DISPLAY “Grade Achieved : ” grade
	END IF
5. STOP

Work_Arrays()
1. START
2. Display “C Application”
3. Display “1. Count the number of Vowels”
4. Display “2. Copy the content of array into another array”
5. Display “3. Delete an item from an array”
6. Display “4. Main Menu”
7. Read choice
8. CONDITION choice OF
CONDITION ‘1’ : Count_Vowels()
		CONDITION ‘2’ : Copy_Contents()
		CONDITION ‘3’ : Delete_item()
		CONDITION ‘4’ : break
9. STOP

Count_Vowels() –
1. START
2. Clear Screen
3. INITIALIZE Count ← 0, i←0
4. DISPLAY “Enter the Sentence : ”
5. READ sentence
6. WHILE (sentence[i] <> ‘\0’)
i = i + 1
IF ((sentence[i] = ‘A’) OR (sentence[i] = ‘E’) OR(sentence[i] = ‘I’) OR(sentence[i] = ‘O’) OR(sentence[i] = ‘U’) OR (sentence[i] = ‘a’) OR(sentence[i] = ‘e’) OR(sentence[i] = ‘i’) OR(sentence[i] = ‘o’) OR(sentence[i] = ‘u’))	THEN
	Count = Count + 1
	END WHILE
7. DISPLAY “Total number of vowels : ” Count
8. STOP

Delete_Item()
1. START
2. Clear Screen
3. DISPLAY “Enter the total number of items : ”
4. READ items;
5. IF (items < =100) THEN
INITIALIZE Count ← 0, i←0
FOR i = 0 to size -1 STEP 1
	DISPLAY “Element ” i +1
Read originalsentence[i]
		NEXT
FOR i = 0 to size -1 STEP 1
	DISPLAY “index -” i “Value - ” originalsentence[i]
		NEXT
		DISPLAY “”Enter the item to delete”
		Read item
FOR i = item to size -1 STEP 1
	originalsentence[i] ← originalsentence[i + 1]
		NEXT
		DISPLAY “Final List : ”
FOR i = 0 to size -2 STEP 1
	DISPLAY “index -” i “Value - ” originalsentence[i]
		NEXT

	ELSE
		DISPLAY “Size is limited to 100 only”
	END IF
6. STOP

Copy_Content()
7. START
8. Clear Screen
9. DISPLAY “Enter the total number of items : ”
10. READ items;
11. IF (items < =100) THEN
DISPLAY “Enter the Sentence : ”
READ originalsentence
INITIALIZE Count ← 0, i←0
FOR i = 0 to size -1 STEP 1
duplicate[i] ← originalsentence[i]
		NEXT
DISPLAY “Original Sentence : ” originalsentence
DISPLAY new line
DISPLAY “Duplicate Sentence : ” duplicate

	ELSE
		DISPLAY “Size is limited to 100 only”
	END IF
12. STOP

Chapter 3 – C programming Concepts
The developer had used various C programming concepts to develop the project. The developer had included the wide variety of the c data handling techniques and control structures to construct the whole project. Following are the concepts used in the project (sample code snippets are also included along with the concepts used):
3.1 Decision Control Structure –
	There are three ways for taking decision in the program and they are –
· IF-ELSE statement –
This is the simplest form of the branching statements. It takes an expression in parenthesis and a statement or block of statements, if the expression is true then the statement or block of statements gets executed otherwise these statements are skipped.
	if (countnumberofdigits == 5)
	return 1;
else
	return 0;

· Switch statement –
A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable being switched on is checked for each switch case.
	while(userinput != 4)
	{
		while(valid != 1)		//___ Validation for user input___//
		{
			resetscreen();
			printf("\n 1. Series of Armstrong numbers between 1 and 500\n\n 2. Fibonacci series from 1 to 100 using recursion\n\n 3. Series of prime numbers from 1 to 100.\n\n 4. Main menu\n\n Your Choice : ");
			userinput = inputnumber();

			switch(userinput)
			{
			case 1:
				valid = 1;
				armstrongseries();
				break;
			case 2:
				valid = 1;
				fibonacciseries(0, 1);
				break;
			case 3:
				valid = 1;
				primenumberseries();
				break;
			case 4:
				return;
			default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)\n");
				stuckuser();
				break;
			}

		}
	}

3.2 Loop Control Structure –
Loops are used to repeat a block of code. Being able to have the program repeatedly execute a block of code is one of the most basic but useful tasks in programming. C programming language provides the following types of loop to handle looping requirement:
· For Looping structure :
For loop executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.
	for(i = 1; i <= number; i++)		
{
	fact = fact * i;
}

The developer has used nested for loop constructs (for loop within other for loop) to create patterns.
	for(tmp = 1; tmp <= row; tmp++)
{
	for(coloumn = 1; coloumn <= row; coloumn++)
	{
		printf("*");
	}
	printf("\n\t");
}

· While looping structure –
While loop repeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body. While loop will execute the 3 statements within the while loop structure till tmpnumber is not equal to 0.
	while(tmpnumber != 0)
{
	remainder = tmpnumber % 10;

	tmpnumber = tmpnumber / 10;

	digitcubesum = remainder * remainder * remainder + digitcubesum;
}

· Do While looping structure –
Do While loop work same as that of while loop except that it tests the condition at the end of the loop body.
	do		//___ Validation for user input___//
	{
		printf("\n 1. Calculate the factorial of a number\n\n 2. Calculate the sum of the first and the fifth digit of a 5 digit number\n\n 3. Check whether a 5 digit number is palindrome or not.\n\n 4. Main menun\n Your Choice : ");
		scanf("%d", &userinput);

		switch(userinput)
		{
		case 1:
			valid = 1;
			system("cls");
			printf("\n\n Enter the number : ");
			scanf("%d", &number);

			factorialresult = factorial(number);		//__ Calling the function factorial that will return the factorial of the given number__//

			printf("\n\n Factorial of %d is %d", number, factorialresult);
			break;
		case 2:
			valid = 1;
			printseries();
			break;
		case 3:
			valid = 1;
			workwithrecords();
			break;
		case 4:
			valid = 1;
			numericfunctions();
			break;
		case 5:
			valid = 1;
			workwitharrays();
			break;
		case 6:
			exit(0);
			break;
		default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4,5,6)");
			break;
		}

	}while(valid != 1);

3.3 Functions –
A function is a group of statements that together perform a task. Every C program has at least one function, which is main(), and all the most trivial programs can define additional functions. The developer has coded the entire application using separate functions. A function declaration tells the compiler about a function's name, return type, and parameters. A function definition provides the actual body of the function. A function is sometimes referred as method or a sub-routine or a procedure, etc.
Function Declarations –
	void createpattern();
void asteriskspyramid();
void numberspyramid();
void asterisksquare();
void stuckuser();

void printseries();
void workwithrecords();
void numericfunctions();
void workwitharrays();
void mainmenu();
void armstrongseries();
int fibonacciseries(int first, int second);
void primenumberseries();

Function Definition –
	void printseries()
{
 int userinput = 0, valid = 0;
	while(valid != 1)		//___ Validation for user input___//
	{
		printf("\n 1. Series of Armstrong numbers between 1 and 500\n\n 2. Fibonacci series from 1 to 100 using recursion\n\n 3. Series of prime numbers from 1 to 100.\n\n 4. Main menu\n\n Your Choice : ");
		scanf("%d", &userinput);
		switch(userinput)
		{
		case 1:
			valid = 1;
			armstrongseries();
			break;
		case 2:
			valid = 1;
			fibonacciseries(0, 1);
			break;
		case 3:
			valid = 1;
			primenumberseries();
			break;
		case 4:
			return;
		default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)");
			break;
		}
 }
}

3.4 Arrays –
C programming language provides a data structure called the array, which can store a fixed-size sequential collection of elements of the same type. An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of the same type. Instead of declaring individual variables, such as number0, number1, ..., and number99, the developer had declare one array variable numbers and has used numbers[0], numbers[1], and ..., numbers[99] to represent individual variables. A specific element in an array is accessed by an index.
3.4.1 Array Declaration –
	int i = 0, size = 0, elements[100], index = 0;

printf("\n\n Total number of items in the array : ");
size = inputnumber();

3.4.2 Scanning the elements of Array –
	for(i = 0; i < size; i++)
{
	printf("\n\n Enter Element [%d] : ", i + 1);
	elements[i] = inputnumber();
}

3.4.3 Printing the elements of Array –
	for(i = 0; i < size; i++)
{
	printf("\n Element [%d] : %d", i+1, elements[i]);
}

3.5 Structures –
Structure is another user defined data type available in C programming which allows the developers to combine data items of different kinds as opposed to the concept of an array that stores the data items of the same kind. Structures are used to represent a record.
The developer has created 3 employee records using structure that itself holds three data items employee name, employee code and gender and then displays the information on the screen.
3.5.1 Structure Declaration –
	struct employeeinformation		//__ Structure Declaration ___//
{
	char empname[30];
	char empcode[30];
	int age;
};

3.5.2 Array of Structures –
	struct employeeinformation emprecords[3];		
//___ Creating an array of structures ____//
int i = 0, tmp = 0;

3.6 Pointers –
A pointer is a programming language data type whose value refers directly to (or "points to") another value stored elsewhere in the computer memory using its address. To declare a pointer its type must be defined first. E.g. – in the given code snippet inputsentence is a pointer of char type.
	
void getsentence(char* inputsentence, int size)

Chapter 4 – Screenshots
4.1 Menus –
 (
Navigation Options
Error Message
)
The above is the first screen that would be available to the user when the user will run the application. The first screen aka main screen provides the user 6 options to choose from. Using this application the user can create patterns, print various series, work with records, use numeric functions and work with arrays. The user will input the choice and application would take appropriate action. However, if the input entered is not correct then an error message would be displayed to the user.
4.1.1 Create Pattern (Sub - menu)–

Sub menu for the create pattern module where user can choose from 4 different option.

4.1.2 Print Series (Submenu) –

Sub menu for the print series module where user can choose from 4 different options.
4.1.3 Numeric Functions (Submenu) –

Sub menu for the numeric functions module where user can choose from 4 different options.
5.1.4 Work with records (Submenu) –

Sub menu for the work with records module where user can choose from 4 different options.
4.2 Creating Patterns –
	Asterisk Pyramid
	Number Pyramid

	
	

	Asterisk Square
	Error Message

	
	[image:]

The above screens are the features provided in the create pattern submenu. The user will select the pattern to be displayed and then the system would prompt the user to enter the number of rows in which patter has to be displayed. However, if the number inputted is not a positive integer value an error message would be displayed prompting the user to enter the number again.
4.3 Count number of vowels –

To count the number of vowels in a sentence (‘a’, ‘e’, ‘i’, ‘o’, ‘u’), user will first enter the sentence (limited to 100 characters only) and will press enter key. The system will display a message after counting the number of vowels in the sentence and result will get displayed on the screen.
4.4 Printing Series –
	Armstrong number series

	

	Fibonacci series

	

	Prime number series

	

There is no input required to print various series including Armstrong number series, Fibonacci series, and Prime number series. The user will select the appropriate feature to be used on the print series submenu.
· Armstrong Number – Digits of a number is extracted one by one and cube of those extracted digits are added together. If the sum of the cube of those numbers is equal to the original number then the number is said to be Armstrong number. Armstrong numbers between 1 and 500 would be displayed on the screen.
· Fibonacci Series – First elements and second element of the series is 0 and 1. However, next digit in the series can be calculated by the adding the previous 2 digits together. System will display Fibonacci series from 1 to 100 only.
· Prime Number Series – Prime number is a number which is divisible by 1 or the number itself. System will display prime numbers from 1 to 100.
4.5 Numeric Function –

	Calculate Factorial
	Sum of first and fifth digit

	
	

	5 digit palindrome number
	Error Message

	
	

Numeric functions allows the user to calculate the factorial of a number, find the sum of the first and the fifth digit of a number, check whether a 5 digit number is palindrome or not.
· Factorial – To calculate the factorial the user will input a positive integer value and the result would be displayed on the screen.
· Sum of first and fifth digit – User will input a 5 digit number and if the number inputted is not correct system will display an error message. However the input is is correct then the sum would be displayed on the screen.
· 5 digit palindrome number – A number is palindrome if the original number is equal to the reverse of that number. User will input a 5 digit number which would be validated first for 5 digits, if found correct then reverse of the number would be calculated and both the number matches a message stating the number is a 5 digit palindrome number.

4.6 Delete Item –

First the system will prompt the user to enter the number of items to be stored in the array. If the user input is more than 100 an error message will get displayed as the size of the array is limited to 100 only. Then, one by one user would input the value of each item to be stored. After entering all the details, the complete list of items would be displayed on the screen.

The user will input the element number to be deleted from the item list and after deletion final list of items would be displayed on the screen.
4.6.1 Error Message (Size of array limited to 100) –

Chapter 5 – Limitations and Future Enhancements
5.1 Limitations –
1. Working with Arrays –
· Size of the array is limited to 100. If the size of the array is specified more than 100 then an error message gets displayed on the screen.
· If the size of array specified is more than 100 then after an error message system again goes back to the main menu.
2. Numeric functions –
· Application crashes when the range of factorial increases the range of integer.
3. Working with records –
· Information of only 3 employees can be stored in the list.
5.2 Future Enhancement –
The major limitations that application has are in terms of the size of the array that is fixed to 100 and lack of validations at proper places such as crossing the limit of integer while inputting a number to calculate factorial, sum of digits etc. Future enhancement can be overcoming all these limitations.

Chapter 6 – Test Plan
Unit testing approach has been used by the tester to check whether all the modules of the application are working correctly or not. Each unit is tested with set of correct and incorrect data to see if it produces results as expected. Following is the result of test:
6.1 Main Menu –
	Data Input
	Expected Output
	Actual Output
	Final Result

	User inputs 1 on the main menu.
	Create pattern sub menu gets displayed
	Create pattern submenu got displayed.
	P

	User inputs 2 on the main menu.
	Print series submenu gets displayed.
	Print series submenu got displayed.
	P

	User inputs 3 on the main menu.
	Work with records submenu gets displayed.
	Work with records submenu gets displayed.
	p

	User inputs 4 on the main menu.
	Numeric function submenu gets displayed.
	Work with arrays submenu got displayed.
	F

	User inputs 6 on the main menu.
	Application closes.
	Application closed.
	P

6.2 Create Pattern –
	Data Input
	Expected Output
	Actual Output
	Final Result

	User inputs 1 on the create pattern submenu.
	The application will ask the user to input the number of rows of pattern to be displayed.
	The application prompts the user to input the number of rows of pattern to be printed.
	P

	User inputs 2 on the create pattern submenu.
	The application will ask the user to input the number of rows of pattern to be displayed.
	The application prompts the user to input the number of rows of pattern to be printed.
	P

	User inputs 4 on the create pattern submenu.
	Application takes the user to the main menu.
	Application exit.
	F

Similarly all other submenu including the print series, numeric functions, work with records, work with arrays modules were tested.				(P – Passed, F - Failed)
6.3 Features tested –
	Feature tested
	Data input
	Expected Output
	Actual Output
	Test Result

	Pyramid of Asterisk
	User inputs 5 as the number of rows of pattern to be printed.
	Pyramid with 5 numbers of rows of pattern should get displayed.
	6 rows of pattern got displayed on the screen.
	F

	Pyramid of numbers
	User inputs 5 as the number of rows of pattern to be printed.
	Pyramid with 5 numbers of rows of pattern should get displayed.
	5 rows of pattern got displayed on the screen. However the output was not in a correct format.
	F

	Pyramid of Squares
	User inputs ‘c’ as the number of rows of pattern to be printed.
	Application should display an error message that only positive numbers are allowed.
	An error message got displayed on the screen that only positive integer values are allowed.
	P

	Pyramid of Squares
	User inputs 4 as the number of rows of pattern to be printed.
	Application should display a square of asterisk where total number of rows should be 4.
	Square of asterisk got displayed on the screen.
	P

	Series of Armstrong numbers
	No input required.
	5 numbers (1, 153, 370, 371, 407) should get displayed on the screen.
	Only 1 got displayed on the screen.
	F

	Series of Prime Numbers
	No input required.
	All the prime numbers between 1 to 100 should get displayed on the screen.
	Actual output as expected.
	P

	Fibonacci Series
	No input required
	There should be 2 1’s in series printed.
	1 got displayed only 1 time.
	F

	Fibonacci Series
	No input required
	Last number displayed on the screen should be 89.
	Result as expected.
	P

	Factorial of a number
	Input is 5
	System should display 120 as the factorial of 5.
	Result as expected
	P

	Delete an item from array
	101 is entered as the total number of items to be stored.
	System should display an error message that size of the array is limited to 100 items only.
	System prompted user to enter 101 items.
	F

	Delete an item from array
	5 elements are inputted and 3rd element was asked to delete.
	3rd number doesn’t get displayed in the final list of items.
	Result as expected.
	P

	Sum of first and fifth digit of a 5 digit number
	Number entered is 123456.
	System should display an error message that the number of digits should be 5 only.
	Error message got displayed on the screen that only a 5 digit number is allowed.
	P

	Check whether a 5 digit number is palindrome or not
	Number entered is 12321.
	12321 is a 5 digit palindrome number.
	Result as expected.
	P

	Find the grade of the student
	71 is entered as input.
	Grade achieved should be A
	Result as expected.
	P

	Count the number of vowels
	“Check it” is entered as input.
	Total number of vowels are 2.
	Result as expected.
	P

	Copy the content of array
	101 is entered as input.
	Error message should get displayed.
	Result as expected.
	p

	Copy the content of array
	“Hello” is entered as input.
	Original = Hello
Duplicate = Hello
	Result as expected.
	P

Chapter 9 – Conclusion
C is a great programming language that can make programming a lot of fun. C has been used successfully for every type of programming problem imaginable from operating systems to spreadsheets to expert systems - and efficient compilers are available for machines ranging in power from the Apple Macintosh to the Cray supercomputers. The largest measure of C's success seems to be based on purely practical considerations:
· the portability of the compiler;
· the standard library concept;
· a powerful and varied repertoire of operators;
· an elegant syntax;
· ready access to the hardware when needed;
· and the ease with which applications can be optimized by hand-coding isolated procedures
C is often called a "Middle Level" programming language. The developer started this project with a brief knowledge of the concepts of C. During the system development, developer was introduced with new concepts and elements of C language along with the progression of the course. The best part of C code is that its provide reusability of the code in terms of functions and the major task of the project was to integrate different functions all together to make a single application.

Chapter 10 – References

Seymour Lipschutz, G A VijayalakshmiPai (2009).Data Structure.17th (ed). New Delhi: Tata 	McGraw Hill Pvt. Ltd. p4.1-6.66
Exforsys Inc. (2008). C Programming - Linked Lists. Available:						http://www.exforsys.com/tutorials/c-language/c-linked-lists.html. (Last accessed on 8th 	October 2013.)
Nasif M. (2008). How to create Linked list using C.								Available:http://www.codeproject.com/KB/cpp/linked_list.aspx. (Last accessed on 10th 	October 2013.)
DhananjoyChakraborty . (2008). stack program using C. Available:					http://www.indiastudychannel.com/projects/3106-stack-program-using-			C.aspx. (Last accessed on 15th October 2013.)

Appendix

Source Code

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<stdlib.h>

void enterndisplayemployeeinformation();
char calculategrade(int marks);

void numericfunctions();
int factorial(int number);
int checknumber(int userinput);
void cappheader();
void resetscreen();

void createpattern();
void asteriskspyramid();
void numberspyramid();
void asterisksquare();
void stuckuser();
void countvowels();
void deleteitem();
int inputnumber();

//___ Function declaration for the main menu ___//

void printseries();
void workwithrecords();
void numericfunctions();
void workwitharrays();
void mainmenu();
void armstrongseries();
int fibonacciseries(int first, int second);
void primenumberseries();
void copyitemsofarray();
void getsentence(char* inputsentence, int size);

struct employeeinformation		//__ Structure Declaration ___//
{
	char empname[30];
	char empcode[30];
	int age;
};

int main()
{
	
	mainmenu();

	return 1;

}

//___ Function definition for the main menu functions___//

void mainmenu()
{
	int userinput = 0, valid = 0;

	while(userinput != 6)
	{
		valid = 0;

		while(valid != 1)		//___ Validation for user input___//
		{
			resetscreen();
			printf("\n 1. Create Pattern\n\n 2. Print Series\n\n 3. Work With Records\n\n 4. Numeric Functions\n\n 5. Work With Arrays\n\n 6. Exit\n\n Your Choice : ");
			userinput = inputnumber();

			switch(userinput)
			{
			case 1:
				valid = 1;
				createpattern();
				break;
			case 2:
				valid = 1;
				printseries();
				break;
			case 3:
				valid = 1;
				workwithrecords();
				break;
			case 4:
				valid = 1;
				numericfunctions();
				break;
			case 5:
				valid = 1;
				workwitharrays();
				break;
			case 6:
				valid = 1;
				break;
			default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4,5,6)\n");
				stuckuser();
				break;
			}
		}
		
	}
}

//_____ Function definition for the print series functions__//

void printseries()
{
	int userinput = 0, valid = 0;

	while(userinput != 4)
	{
		valid = 0;
		
		while(valid != 1)		//___ Validation for user input___//
		{
			resetscreen();
			printf("\n 1. Series of Armstrong numbers between 1 and 500\n\n 2. Fibonacci series from 1 to 100 using recursion\n\n 3. Series of prime numbers from 1 to 100.\n\n 4. Main menu\n\n Your Choice : ");
			userinput = inputnumber();

			switch(userinput)
			{
			case 1:
				valid = 1;
				armstrongseries();
				stuckuser();
				break;
			case 2:
				valid = 1;
				resetscreen();
				printf("\n\n Fibonacci Series from 1 to 100 : ");
				printf("%d", fibonacciseries(0, 1));
				stuckuser();
				break;
			case 3:
				valid = 1;
				primenumberseries();
				break;
			case 4:
				valid = 1;
				break;
			default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)\n");
				stuckuser();
				break;
			}

		}
	}

	stuckuser();
}

void armstrongseries()
{
	int digitcubesum = 0, tmp = 0, remainder = 0, tmpnumber = 0;

	resetscreen();
	printf("\n\n\tArmstrong Numbers between 1 and 500 : ");
	for(tmp = 1; tmp <= 500; tmp++)
	{
		tmpnumber = tmp;
		digitcubesum = 0;
		while(tmpnumber != 0)
		{
			remainder = tmpnumber % 10;
			tmpnumber = tmpnumber / 10;
			digitcubesum = remainder * remainder * remainder + digitcubesum;
		}

		if (digitcubesum == tmp)
		{
			printf("%d, ", tmp);
		}
	}

	printf("\b\b ");
}

int fibonacciseries(int first, int second)
{
	if (first + second > 100)			//__ Base Case __//
	{
		return second;
	}
	else
	{
		printf("%d ", second);
		fibonacciseries(second, first + second);
	}
}
void primenumberseries()
{
	int number = 0, i = 1, count = 0, j = 0;

	resetscreen();
	printf("\n\n Prime numbers(From 1 to 100) : ");
	for(i = 2; i <= 100; i++)
	{
		if (i == 41)
			printf("\n\n\t");

		number = i;
		count = 0;

		for(j = 2; j < number; j++)
		{
			if ((number % j) == 0)
				count++;
		}

		if (count == 0)
			printf("%d ", number);
	}

	stuckuser();
}

void createpattern()			//___ Menu for the functions that would create different patterns including pyramid of asterisk, pyramid of numbers, square of asterisks ___//
{
	int userinput = 0, valid = 0;		

	while(valid != 1)		//___ Validation for user input___//
	{
		resetscreen();
		printf("\n 1. Pyramid of asterisks\n\n 2. Pyramid of numbers\n\n 3. Square of asterisks\n\n 4. Main menu\n\n Your Choice : ");
		scanf("%d", &userinput);

		switch(userinput)
		{
		case 1:
			valid = 1;
			asteriskspyramid();			//___ Making a call to asteriskpyramid function __//
			break;
		case 2:
			valid = 1;
			numberspyramid();			//___ Making a call to numberspyramid function __//
			break;
		case 3:
			valid = 1;
			asterisksquare();			//___ Making a call to asterisksquare function__//
			break;
		case 4: valid = 1;
			break;
		default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)\n");		//__ Error Message in case the user input is not a positive value between 1 to 4___//
			stuckuser();
			break;
		}

	}

	stuckuser();
}

void asteriskspyramid()		//___ Function definition of the asteriskpyramid function ___///
{
	int row = 0, coloumn = 0, tmp = 0;

	resetscreen();
	printf("\n\n\tPyramid of Asterisks\n\n Enter the number of rows of pattern to be printed : ");
	fflush(stdin);
	row = inputnumber();

	for(tmp = 1; tmp <= row; tmp++)		
	{
		printf("\n\t");	

		for(coloumn = 1; coloumn <= tmp; coloumn++)
		{
			printf("*");
		}
				//__ "\n - represents new line character whereas \t represents tab space" __//
	}
}
void numberspyramid()
{
	int row = 0, coloumn = 0, tmp = 0;

	resetscreen();
	printf("\n\n\tPyramid of Numbers\n\n Enter the number of rows of pattern to be printed : ");
	fflush(stdin);
	row = inputnumber();

	for(tmp = 1; tmp <= row; tmp++)
	{
		printf("\n\t");
		for(coloumn = row; coloumn >= tmp; coloumn--)
		{
			printf("%d",coloumn);		//__ Printing the coloumn number on the screen ___//
		}
	
	}
}

void asterisksquare()		//__ Asterisk of Sqaure means that the number of rows will always be equal to the total number of coloumns__//
{
	int row = 0, coloumn = 0, tmp = 0, valid = 0;
	
	resetscreen();
	printf("\n\n\tSquare of Asterisk\n\n Enter the number of rows of pattern to be printed : ");
	fflush(stdin);
	row = inputnumber();

	for(tmp = 1; tmp <= row; tmp++)
	{
		printf("\n\t");

		for(coloumn = 1; coloumn <= row; coloumn++)
		{
			printf("*");		
		}
		
	}
}

void stuckuser()
{
	printf("\n\n Press Enter to Continue..");
	while(getch()!=13)
	{}
}

void numericfunctions()
{
	int userinput = 0, valid = 0, number = 0, factorialresult = 0, i = 0, tmpnumber = 0, placevalue = 0, remainder = 0, sumofdigits = 0, finalnumber = 0;

	do		//___ Validation for user input___//
	{
		resetscreen();
		printf("\n 1. Calculate the factorial of a number\n\n 2. Calculate the sum of the first and the fifth digit of a 5 digit number\n\n 3. Check whether a 5 digit number is palindrome or not.\n\n 4. Main menu\n\n Your Choice : ");
		userinput = inputnumber();

		switch(userinput)
		{
		case 1:
			valid = 1;
			resetscreen();
			printf("\n\n Enter the number : ");
			fflush(stdin);
			number = inputnumber();

			factorialresult = factorial(number);		//__ Calling the function factorial that will return the factorial of the given number__//

			printf("\n\n Factorial of %d is %d.", number, factorialresult);
			break;
		case 2:
			valid = 1;

			resetscreen();
			printf("\n\n Enter the number : ");
			number = inputnumber();

			i = checknumber(number);

			if (i == 1)
			{
				tmpnumber = number;
				placevalue = 0;

				while(tmpnumber != 0)
				{
					remainder = tmpnumber % 10;
					tmpnumber = tmpnumber / 10;
					placevalue++;
					if ((placevalue == 1) || (placevalue == 5))
						sumofdigits = sumofdigits + remainder;
				}

				printf("\n\n Sum of first and fifth digit of %d is %d ", number, sumofdigits);
			}
			else
			{
				printf("\n\n Error : Input is not correct (only input a 5 digit number)");
				valid = 0;
			}
			break;
		case 3:
			valid = 1;

			resetscreen();
			printf("\n\n Enter the number : ");
			scanf("%d", &number);

			i = checknumber(number);

			if (i == 1)
			{
				tmpnumber = number;
				placevalue = 1;
				finalnumber = 0;

				
				while(tmpnumber != 0)
				{
					remainder = tmpnumber % 10;
					tmpnumber = tmpnumber / 10;
					placevalue = placevalue * 10;
					finalnumber = finalnumber + remainder * placevalue;
				}

				if (finalnumber == number)
				{
					printf("\n\n %d is a 5 digit palindrome number.", finalnumber);
				}
				else
				{
					printf("\n\n %d is not a 5 digit palindrome number.", number);
				}
			}
			else
			{
				printf("\a\n\n Error : Input is not correct (input only 5 digit number)");
			}
			
			break;
		case 4: valid = 1;
			break;
		default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)");
			stuckuser();
			break;
		}

	}while(valid != 1);

	stuckuser();
}

int factorial(int number)
{
	int i = 0, fact = 1;

	for(i = 1; i <= number; i++)			//___ 5! = 5 X 4 X 3 X 2 X 1. To calculate the factorial of a given number multiply all the natural numbers from 1 to that particular number___//
	{
		fact = fact * i;
	}

	return fact;							//__ Returning the result i.e. the factorial of the number___//
}

int checknumber(int number)					//__ Function to check whether the number entered by the user is of 5 digits or not __//
{
	int countnumberofdigits = 0;

	while(number != 0)						//__ Count the number of digits the number doesnt becomes 0 __//
	{
		number = number / 10;

		countnumberofdigits++;
	}

	if (countnumberofdigits == 5)
		return 1;
	else
		return 0;
}
	
void workwitharrays()
{
	
	int userinput = 0, valid = 0, number = 0, factorialresult = 0, i = 0, tmpnumber = 0, placevalue = 0, remainder = 0, sumofdigits = 0, finalnumber = 0;

	while(userinput != 4)
	{
		valid = 0;

		do		//___ Validation for user input___//
		{
			resetscreen();
			printf("\n 1. Count number of vowels in the sentence. \n\n 2. Copy the contents of an array into another.\n\n 3. Delete an item for an array.\n\n 4. Main menu\n\n Your Choice : ");
			scanf("%d", &userinput);

			switch(userinput)
			{
			case 1:
				valid = 1;
				countvowels();
				break;
			case 2:
				valid = 1;
				copyitemsofarray();
				break;
			case 3:
				valid = 1;
				deleteitem();
				break;
			case 4:
				valid = 1;
				break;
		
			default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4)");
				stuckuser();
				break;
			}

		}while(valid != 1);
	}

	stuckuser();
}

void cappheader()
{
	printf("\n\n\t\t***");
	printf("\n\n\t\t\t\tC Application ");
	printf("\n\n\t\t***\n");
}

void resetscreen()
{
	system("cls");
	cappheader();
}

void countvowels()
{
	int i = 0, countvowel = 0;
	char inputsentence[100];

	resetscreen();
	printf("\n\n Enter the sentence (limited to 100 characters only) : ");
	getsentence(inputsentence, 100);

	i = 0;
	while(inputsentence[i] != '\0')
	{
		switch(inputsentence[i])
		{
		case 'a':
		case 'A':
		case 'e':
		case 'E':
		case 'i':
		case 'I':
		case 'o':
		case 'O':
		case 'u':
		case 'U':countvowel++;
		}
		i++;
	}
	
	printf("\n\n Total number of vowels in this sentence are : %d", countvowel);
	stuckuser();
}

void getsentence(char* inputsentence, int size)
{
	int i = 0, tmp = 0;

	char ch;

	i = 0;

	while(i <= size - 2)
	{
		ch = getch();

		if ((ch == 13) && (i == 0))
		{
			printf("\n\n Error : Cannot skip the field \n\n Enter the sentence again : ");
		}
		else if ((ch == 13) && (i > 0))
		{
			break;
		}
		else if ((ch == 8) && (i > 0))
		{
			i--;
			printf("\b \b");
		}
		else if (ch != 8)
		{
			printf("%c", ch);
			inputsentence[i] = ch;
			i++;
		}
	}

	inputsentence[i] = '\0';
}

void copyitemsofarray()
{
	int i = 0, size = 0;

	char orisentence[100], dulsentence[100];

	resetscreen();

	printf("\n\n Total number of items in the array : ");
	fflush(stdin);
	size = inputnumber();

	if (size <= 100)
	{
		if (size > 1)
		{
			printf("\n\n Enter the sentence : ");
			getsentence(orisentence, size);
			strcpy(dulsentence, orisentence);
		}
		else if (size == 1)
		{
			printf("\n\n Enter the sentence : ");
			getsentence(orisentence, 2);
			strcpy(dulsentence, orisentence);
		}
		else if (size == 0)
		{
			printf("\a\n\n Error : Array size is 0, it cannot accomodate any item");
		}

		printf("\n\n Original Sentence : ");

		for(i = 0; i < strlen(orisentence); i++)
		{
			printf("%c", orisentence[i]);
		}

		printf("\n\n Duplicate Sentence : ");

		for(i = 0; i < strlen(dulsentence); i++)
		{
			printf("%c", dulsentence[i]);
		}
		
	}
	else
	{
		printf("\a\n\n Error : Array size is limited to 100 only");
	}

	stuckuser();

	
}

void deleteitem()
{
	int i = 0, size = 0, elements[100], index = 0;

	resetscreen();
	printf("\n\n Total number of items in the array : ");
	fflush(stdin);			//___ For clearing input buffer __//
	size = inputnumber();

	if (size <= 100)
	{
		printf("\n\n Note : Only positive integer values are allowed");
		
		for(i = 0; i < size; i++)
		{
			printf("\n\n Enter Element [%d] : ", i + 1);
			elements[i] = inputnumber();
		}

		resetscreen();
		printf("\n\nOriginal List\n");

		for(i = 0; i < size; i++)
		{
			printf("\n Element [%d] : %d", i+1, elements[i]);
		}

		printf("\n\n Enter the item to be deleted (please enter the element number) : ");
		scanf("%d", &index);

		if (index > size)
		{
			printf("\n\n Number of items in the array are %d only", size);
		}
		else
		{
			for(i = index - 1; i < size; i++)
			{
				elements[i] = elements[i + 1];
			}

			printf("\n\n List after deletion of item\n");

			for(i = 0; i < size - 1; i++)
			{
				printf("\n Element [%d] : %d", i+1, elements[i]);
			}
		}
	}
	else
	{
		printf("\a\n\n Error : Array size is limited to 100 only");
	}

	stuckuser();
}

void workwithrecords()
{
	int userinput = 0, valid = 0, marks = 0, i =0;
	
	char studentname[30], studentcode[30];

	while(userinput != 3)
	{
		valid = 0;

		while(valid != 1)		//___ Validation for user input___//
		{
			resetscreen();
			printf("\n 1. Enter and Display Employee Information\n\n 2. Calculate the grade of the student\n\n 3. Main Menu\n\n Your Choice : ");
			userinput = inputnumber();

			switch(userinput)
			{
			case 1:
				valid = 1;
				enterndisplayemployeeinformation();
				break;
			case 2:
				valid = 1;
				resetscreen();
				printf("\n\n Enter the Marks scored by the student : ");
				marks = inputnumber();
				if (marks > 100)
				{
					printf("\n\n Error : Marks cannot be greater than 100");
					stuckuser();
					valid = 0;
				}
				else
				{
					printf("\n\nEnter student Name : ");
					getsentence(studentname, 30);

					printf("\n\nEnter Roll Number : ");
					getsentence(studentcode, 30);

					resetscreen();
					printf("\n\nStudent Name : ");
					for(i = 0; i < strlen(studentname); i++)
					{
						printf("%c", studentname[i]);
					}

					printf("\n\n Grade Scored by the student is %c", calculategrade(marks));
				}
				break;
			case 3:
				valid = 1;
				break;
			
			case 6:
				break;
			default: printf("\a\n\n Error : Input is not correct (input only 1,2,3,4,5,6)\n");
				stuckuser();
				break;
			}
		}
		
	}
}

int inputnumber()
{
	int number = 0, temp = 1, n = 0, i = 0;
	
	char tmpnumber[10];

	do{
		if(temp == 0)										
		{
			printf("\n\n Enter the number again : ");
		}

		number = 0;

		gets(tmpnumber);

		fflush(stdin);
	
		if(stricmp(tmpnumber, "") == 0)
		{
			temp = 0;
		}
		else
		{
			n = 0;
			for(i = 0;i < strlen(tmpnumber); i++)
			{
				if(tmpnumber[i]>=48 && tmpnumber[i]<=57)		// 48-57 are the ASCII values of numbers 0-9
				{
					n++;
					switch (tmpnumber[i])						
					{
				
					case '0': number = number*10 + 0; break;
					case '1': number = number*10 + 1; break;
					case '2': number = number*10 + 2; break;
					case '3': number = number*10 + 3; break;
					case '4': number = number*10 + 4; break;
					case '5': number = number*10 + 5; break;
					case '6': number = number*10 + 6; break;
					case '7': number = number*10 + 7; break;
					case '8': number = number*10 + 8; break;
					case '9': number = number*10 + 9; break;
				
					}
				}
			}
			if(n != strlen(tmpnumber))
			{
				printf("\a\n\t\tError : Input is not correct (input only positive integers)\n");
				temp = 0;
			}
			else
			{
				temp = 1;
			}
		}
	}while(temp != 1);

	return number;
}

char calculategrade(int marks)
{
	if (marks >= 70)
	{
		return 'A';
	}
	else if ((marks >= 60) && (marks <= 69))
	{
		return 'B';
	}
	else if ((marks >= 50) && (marks <= 59))
	{
		return 'C';
	}
	else if (marks < 50)
	{
		return 'D';
	}
}

void enterndisplayemployeeinformation()
{
	struct employeeinformation emprecords[3];		//___ Creating an array of structures ____//
	int i = 0, tmp = 0;
	resetscreen();

	for(i = 1; i <= 3; i++)
	{
		resetscreen();
		printf("\n\n Employee [%d] : ", i + 1);
		printf("\n\n Enter the name : ");
		getsentence(emprecords[i].empname, 30);

		printf("\n\n Enter Code : ");
		getsentence(emprecords[i].empcode, 30);

		printf("\n\n Enter the Age : ");
		emprecords[i].age = inputnumber();		

	}

	printf("\n\n Displaying Employee Information : ");

	for(i = 1; i <= 3; i++)
	{
		resetscreen();
		printf("\n\n Employee [%d] : ", i + 1);
		printf("\n\n Name : ");
		tmp = 0;
		
		while(emprecords[i].empname[tmp] != '\0')
		{
			printf("%c", emprecords[i].empname[tmp]);
			tmp++;
		}

		printf("\n\n Code : ");
		tmp = 0;
		
		while(emprecords[i].empcode[tmp] != '\0')
		{
			printf("%c", emprecords[i].empcode[tmp]);
			tmp++;
		}

		printf("\n\n Age : %d", emprecords[i].age);

	}

}
Level - 1	Asia Pacific Institute of Information Technology	2013

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image1.jpeg

image2.gif

image3.png

