

Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version 2: October 2012

ISBN: 978-3-943075-19-9

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Andrew Rogerson & Talita Telma Stöckle

Technical Editing: Andrew Rogerson

Idea & Concept: Smashing Media GmbH

Smashing eBook #12│WordPress Tutorials │ 2

ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and
developers worldwide. Its rigorous quality control and thorough editorial
work has gathered a devoted community exceeding half a million
subscribers, followers and fans. Each and every published article is carefully
prepared, edited, reviewed and curated according to the high quality
standards set in Smashing Magazine's own publishing policy. Smashing
Magazine publishes articles on a daily basis with topics ranging from
business, visual design, typography, front-end as well as back-end
development, all the way to usability and user experience design. The
magazine is — and always has been — a professional and independent
online publication neither controlled nor influenced by any third parties,
delivering content in the best interest of its readers. These guidelines are
continually revised and updated to assure that the quality of the published
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing
companies in the field of Web design. Founded in 2009 by Sven Lennartz
and Vitaly Friedman, the company's headquarters is situated in southern
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead
publication, Smashing Magazine, has gained worldwide attention since its
emergence back in 2006, and is supported by the vast, global Smashing
community and readership. Smashing Magazine had proven to be a
trustworthy online source containing high quality articles on progressive
design and coding techniques as well as recent developments in the Web
design industry.

Smashing eBook #12│WordPress Tutorials │ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com

About this eBook
You've probably already gathered a lot of knowledge on how to improve
your WordPress skills, but applying this on your own might be a complicated
process. WordPress Tutorials will facilitate putting all this knowledge into
practice. Through the accurate methods which were exclusively selected,
you will certainly acquire the expertise you need for your future WordPress
publishing projects without any complications.

Table of Contents
How To Create Custom Post Meta Boxes In WordPress

How To Create Tabs On WordPress Settings Pages

Create Native Admin Tables In WordPress The Right Way

How To Build A Media Site On WordPress – Part 1

How To Build A Media Site On WordPress – Part 2

Getting Started With bbPress

WordPress Multisite: Practical Functions And Methods

How To Improve Your WordPress Plugin’s Readme.txt

Integrating Amazon S3 with WordPress

The Authors

Smashing eBook #12│WordPress Tutorials │ 4

How To Create Custom Post Meta Boxes
In WordPress

Justin Tadlock

What seems like one of the most complicated bits of functionality in
WordPress is adding meta boxes to the post editing screen. This complexity
only grows as more and more tutorials are written on the process with weird
loops and arrays. Even meta box “frameworks” have been developed. I’ll let
you in on a little secret though: it’s not that complicated.

Smashing eBook #12│WordPress Tutorials │ 5

Creating custom meta boxes is extremely simple, at least it is once you’ve
created your first one using the tools baked into WordPress’ core code. In
this tutorial, I’ll walk you through everything you need to know about meta
boxes:

• Creating meta boxes.

• Using meta boxes with any post type.

• Handling data validation.

• Saving custom meta data.

Smashing eBook #12│WordPress Tutorials │ 6

• Retrieving custom meta data on the front end.

Note: When I use the term “post” throughout this tutorial, I’m referring to a
post of any post type, not just the default blog post type bundled with
WordPress.

What is a post meta box?
A post meta box is a draggable box shown on the post editing screen. Its
purpose is to allow the user to select or enter information in addition to the
main post content. This information should be related to the post in some
way.

Generally, two types of data is entered into meta boxes:

• Metadata (i.e. custom fields),

• Taxonomy terms.

Of course, there are other possible uses, but those two are the most
common. For the purposes of this tutorial, you’ll be learning how to develop
meta boxes that handle custom post metadata.

What is post metadata?
Post metadata is data that’s saved in the wp_postmeta table in the
database. Each entry is saved as four fields in this table:

• meta_id: A unique ID for this specific metadata.

• post_id: The post ID this metadata is attached to.

• meta_key: A key used to identify the data (you’ll work with this often).

Smashing eBook #12│WordPress Tutorials │ 7

• meta_value: The value of the metadata.

In the following screenshot, you can see how this looks in the database.

When you get right down to it, metadata is just key/value pairs saved for a
specific post. This allows you to add all sorts of custom data to your posts. It
is especially useful when you’re developing custom post types.

The only limit is your imagination.

Note: One thing to keep in mind is that a single meta key can have multiple
meta values. This isn’t a common use, but it can be extremely powerful.

Smashing eBook #12│WordPress Tutorials │ 8

Working with post metadata
By now, you’re probably itching to build some custom meta boxes.
However, to understand how custom meta boxes are useful, you must
understand how to add, update, delete, and get post metadata.

I could write a book on the various ways to use metadata, but that’s not the
main purpose of this tutorial. You can use the following links to learn how
the post meta functions work in WordPress if you’re unfamiliar with them.

• add_post_meta(): Adds post metadata.

• update_post_meta(): Updates post metadata.

• delete_post_meta(): Deletes post metadata.

• get_post_meta(): Retrieves post metadata.

The remainder of this tutorial assumes that you’re at least familiar with how
these functions work.

!e setup
Before building meta boxes, you must have some ideas about what type of
metadata you want to use. This tutorial will focus on building a meta box that
saves a custom post CSS class, which can be used to style posts.

I’ll start you off by teaching you to develop custom code that does a few
extremely simple things:

• Adds an input box for you to add a custom post class (the meta box).

• Saves the post class for the smashing_post_class meta key.

• Filters the post_class hook to add your custom post class.

Smashing eBook #12│WordPress Tutorials │ 9

http://codex.wordpress.org/Function_Reference/add_post_meta
http://codex.wordpress.org/Function_Reference/add_post_meta
http://codex.wordpress.org/Function_Reference/update_post_meta
http://codex.wordpress.org/Function_Reference/update_post_meta
http://codex.wordpress.org/Function_Reference/delete_post_meta
http://codex.wordpress.org/Function_Reference/delete_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta

You can do much more complex things with meta boxes, but you need to
learn the basics first.

All of the PHP code in the following sections goes into either your custom
plugin file or your theme’s functions.php file.

Building a custom post meta box
Now that you know what you’re building, it’s time to start diving into some
code. The first two code snippets in this section of the tutorial are mostly
about setting everything up for the meta box functionality.

Since you only want your post meta box to appear on the post editor screen
in the admin, you’ll use the load-post.php and load-post-new.php
hooks to initialize your meta box code.

/* Fire our meta box setup function on the post editor screen.
*/
add_action('load-post.php',
'smashing_post_meta_boxes_setup');
add_action('load-post-new.php',
'smashing_post_meta_boxes_setup');

Most WordPress developers should be familiar with how hooks work, so this
should not be anything new to you. The above code tells WordPress that
you want to fire the smashing_post_meta_boxes_setup function on
the post editor screen. The next step is to create this function.

The following code snippet will add your meta box creation function to the
add_meta_boxes hook. WordPress provides this hook to add meta boxes.

/* Meta box setup function. */
function smashing_post_meta_boxes_setup() {

 /* Add meta boxes on the 'add_meta_boxes' hook. */

Smashing eBook #12│WordPress Tutorials │ 10

 add_action('add_meta_boxes',
'smashing_add_post_meta_boxes');
}

Now, you can get into the fun stuff.

In the above code snippet, you added the
smashing_add_post_meta_boxes() function to the add_meta_boxes
hook. This function’s purpose should be to add post meta boxes.

In the next example, you’ll create a single meta box using the
add_meta_box() WordPress function. However, you can add as many meta
boxes as you like at this point when developing your own projects.

Before proceeding, let’s look at the add_meta_box() function:

add_meta_box($id, $title, $callback, $page, $context =
'advanced', $priority = 'default', $callback_args = null);

• $id: This is a unique ID assigned to your meta box. It should have a
unique prefix and be valid HTML.

• $title: The title of the meta box. Remember to internationalize this for
translators.

• $callback: The callback function that displays the output of your meta
box.

• $page: The admin page to display the meta box on. In our case, this
would be the name of the post type (post, page, or a custom post type).

• $context: Where on the page the meta box should be shown. The
available options are normal, advanced, and side.

• $priority: How high/low the meta box should be prioritized. The
available options are default, core, high, and low.

Smashing eBook #12│WordPress Tutorials │ 11

http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box

• $callback_args: An array of custom arguments you can pass to your
$callback function as the second parameter.

The following code will add the post class meta box to the post editor
screen.

/* Create one or more meta boxes to be displayed on the post
editor screen. */
function smashing_add_post_meta_boxes() {

 add_meta_box(
 'smashing-post-class', // Unique ID
 esc_html__('Post Class', 'example'), // Title
 'smashing_post_class_meta_box', // Callback function
 'post', // Admin page (or post type)
 'side', // Context
 'default' // Priority
);
}

You still need to display the meta box’s HTML though. That’s where the
smashing_post_class_meta_box() function comes in ($callback
parameter from above).

/* Display the post meta box. */
function smashing_post_class_meta_box($object, $box) { ?>

 <?php wp_nonce_field(basename(__FILE__),
'smashing_post_class_nonce'); ?>

 <p>
 <label for="smashing-post-class"><?php _e("Add a custom
CSS class, which will be applied to WordPress' post class.",
'example'); ?></label>

 <input class="widefat" type="text" name="smashing-post-
class" id="smashing-post-class" value="<?php echo
esc_attr(get_post_meta($object->ID, 'smashing_post_class',
true)); ?>" size="30" />
 </p>
<?php }

Smashing eBook #12│WordPress Tutorials │ 12

What the above function does is display the HTML output for your meta box.
It displays a hidden nonce input (you can read more about nonces on the
WordPress Codex). It then displays an input element for adding a custom
post class as well as output the custom class if one has been input.

At this point, you should have a nice-looking meta box on your post editing
screen. It should look like the following screenshot.

The meta box doesn’t actually do anything yet though. For example, it won’t
save your custom post class. That’s what the next section of this tutorial is
about.

Smashing eBook #12│WordPress Tutorials │ 13

http://codex.wordpress.org/WordPress_Nonces
http://codex.wordpress.org/WordPress_Nonces

Saving the meta box data
Now that you’ve learned how to create a meta box, it’s time to learn how to
save post metadata.

Remember that smashing_post_meta_boxes_setup() function you
created earlier? You need to modify that a bit. You’ll want to add the
following code to it.

/* Save post meta on the 'save_post' hook. */
add_action('save_post', 'smashing_save_post_class_meta', 10,
2);

So, that function will actually look like this:

/* Meta box setup function. */
function smashing_post_meta_boxes_setup() {

 /* Add meta boxes on the 'add_meta_boxes' hook. */
 add_action('add_meta_boxes',
'smashing_add_post_meta_boxes');

 /* Save post meta on the 'save_post' hook. */
 add_action('save_post', 'smashing_save_post_class_meta',
10, 2);
}

The new code you’re adding tells WordPress that you want to run a custom
function on the save_post hook. This function will save, update, or delete
your custom post meta.

When saving post meta, your function needs to run through a number of
processes:

• Verify the nonce set in the meta box function.

• Check that the current user has permission to edit the post.

Smashing eBook #12│WordPress Tutorials │ 14

• Grab the posted input value from $_POST.

• Decide whether the meta should be added, updated, or deleted based
on the posted value and the old value.

I’ve left the following function somewhat generic so that you’ll have a little
flexibility when developing your own meta boxes. It is the final snippet of
code that you’ll need to save the metadata for your custom post class meta
box.

/* Save the meta box's post metadata. */
function smashing_save_post_class_meta($post_id, $post) {

 /* Verify the nonce before proceeding. */
 if (!isset($_POST['smashing_post_class_nonce']) || !
wp_verify_nonce($_POST['smashing_post_class_nonce'],
basename(__FILE__)))
 return $post_id;

 /* Get the post type object. */
 $post_type = get_post_type_object($post->post_type);

 /* Check if the current user has permission to edit the
post. */
 if (!current_user_can($post_type->cap->edit_post,
$post_id))
 return $post_id;

 /* Get the posted data and sanitize it for use as an HTML
class. */
 $new_meta_value = (isset($_POST['smashing-post-class']) ?
sanitize_html_class($_POST['smashing-post-class']) : '');

 /* Get the meta key. */
 $meta_key = 'smashing_post_class';

 /* Get the meta value of the custom field key. */
 $meta_value = get_post_meta($post_id, $meta_key, true);

 /* If a new meta value was added and there was no previous
value, add it. */

Smashing eBook #12│WordPress Tutorials │ 15

 if ($new_meta_value && '' == $meta_value)
 add_post_meta($post_id, $meta_key, $new_meta_value,
true);

 /* If the new meta value does not match the old value,
update it. */
 elseif ($new_meta_value && $new_meta_value != $meta_value)
 update_post_meta($post_id, $meta_key, $new_meta_value);

 /* If there is no new meta value but an old value exists,
delete it. */
 elseif ('' == $new_meta_value && $meta_value)
 delete_post_meta($post_id, $meta_key, $meta_value);
}

At this point, you can save, update, or delete the data in the “Post Class”
meta box you created from the post editor screen.

Using the metadata from meta boxes
So you have a custom post meta box that works, but you still need to do
something with the metadata that it saves. That’s the point of creating meta
boxes. What to do with your metadata will change from project to project, so
this is not something I can answer for you. However, you will learn how to
use the metadata from the meta box you’ve created.

Since you’ve been building a meta box that allows a user to input a custom
post class, you’ll need to filter WordPress’ post_class hook so that the
custom class appears alongside the other post classes.

Remember that get_post_meta() function from much earlier in the
tutorial? You’ll need that too.

The following code adds the custom post class (if one is given) from your
custom meta box.

Smashing eBook #12│WordPress Tutorials │ 16

/* Filter the post class hook with our custom post class
function. */
add_filter('post_class', 'smashing_post_class');

function smashing_post_class($classes) {

 /* Get the current post ID. */
 $post_id = get_the_ID();

 /* If we have a post ID, proceed. */
 if (!empty($post_id)) {

 /* Get the custom post class. */
 $post_class = get_post_meta($post_id,
'smashing_post_class', true);

 /* If a post class was input, sanitize it and add it to
the post class array. */
 if (!empty($post_class))
 $classes[] = sanitize_html_class($post_class);
 }

 return $classes;
}

If you look at the source code of the page where this post is shown on the
front end of the site, you’ll see something like the following screenshot.

Smashing eBook #12│WordPress Tutorials │ 17

Pretty cool, right? You can use this custom class to style posts however you
want in your theme’s stylesheet.

Security
One thing you should keep in mind when saving data is security. Security is
a lengthy topic and is outside the scope of this article. However, I thought it
best to at least remind you to keep security in mind.

You’ve already been given a link explaining nonces earlier in this tutorial.
The other resource I want to provide you with is the WordPress Codex
guide on data validation. This documentation will be your best friend when
learning how to save post metadata and will provide you with the tools you’ll
need for keeping your plugins/themes secure.

Bonus points to anyone who can name all of the security measures used
throughout this tutorial.

Create a custom meta box
Once you’ve copied, pasted, and tested the bits of pieces of code from this
tutorial, I encourage you to try out something even more complex. If you
really want to see how powerful meta boxes and post metadata can be, try
doing something with a single meta key and multiple meta values for that
key (it’s challenging).

Smashing eBook #12│WordPress Tutorials │ 18

http://codex.wordpress.org/Data_Validation
http://codex.wordpress.org/Data_Validation

How To Create Tabs On WordPress
Se"ings Pages

Elio Rivero

Using tabs in a user interface can help you better organize content, so it’s
only natural that WordPress themes that have a lot of options would benefit
from tabs on their settings page. In this tutorial, you will learn how to create
a tabbed settings page, and you’ll get to download a WordPress theme that
implements the code.

Smashing eBook #12│WordPress Tutorials │ 19

OVERVIEW

To get a quick grasp of the tabs we’ll be creating, go to Appearance/
Themes in the WordPress admin area. You will find two tabs there: “Manage
Themes” and “Install Themes.” When you click on one, the content changes
and the tab’s title is highlighted.

The process is actually fairly simple: we set and send a tab variable when a
tab is clicked. By querying this tab variable later, in $_GET['tab'], we will
know which tab was selected so that we can highlight the corresponding
title and display the corresponding tab.

In our approach, there are three times when we will need to know which tab
the user is currently on:

1. When we initially display the tabs and the form fields for the settings
(in order to display the correct set of fields);

2. When the user saves their settings (in order to save the correct fields);

3. When redirecting the user after they have saved their settings (in order
to redirect the user to the correct tab).

For the sake of brevity, we won’t explain all of the code, only the snippets
that are relevant to this approach. You can, however, find all of the code in
the accompanying theme.

Smashing eBook #12│WordPress Tutorials │ 20

Creating !e Tabs
The first snippet we will inspect is the code that produces the tabs:

function ilc_admin_tabs($current = 'homepage') {
 $tabs = array('homepage' => 'Home Settings', 'general' =>
'General', 'footer' => 'Footer');
 echo '<div id="icon-themes" class="icon32">
</div>';
 echo '<h2 class="nav-tab-wrapper">';
 foreach($tabs as $tab => $name){
 $class = ($tab == $current) ? ' nav-tab-active' :
'';
 echo "<a class='nav-tab$class' href='?page=theme-
settings&tab=$tab'>$name";

 }
 echo '</h2>';
}

This function will be called later in the content for the settings page. We first
define an array that contains all of our tabs. The first tab, which is displayed
first by default, is homepage, where we can set up some option for the
appearance of the home page. Then we have general, which could be a
page containing options used throughout the website, and, finally, footer,
to include a tracking code in the footer.

Smashing eBook #12│WordPress Tutorials │ 21

We then set up the URL links for each tab and output them. Notice that if the
tab is open, an additional class, nav-tab-active, is added.

Displaying !e Tabbed Content
The content for the settings page is displayed in the callback function for
add_theme_page (which is an abstraction of add_submenu_page, with
the parent slug set to themes.php), which in our theme will be named
ilc_settings_page. This is where you will call the function that we just
went over.

Smashing eBook #12│WordPress Tutorials │ 22

http://codex.wordpress.org/Function_Reference/add_submenu_page
http://codex.wordpress.org/Function_Reference/add_submenu_page

function ilc_settings_page() {
 global $pagenow;
 $settings = get_option("ilc_theme_settings");

//generic HTML and code goes here

if (isset ($_GET['tab'])) ilc_admin_tabs($_GET['tab']);
else ilc_admin_tabs('homepage');

If the tab is the default one, then $_GET['tab'] is not defined, in which
case the current tab will be homepage and, thus, the highlighted one.
Otherwise, the highlighted tab will be the one defined in $_GET['tab'].

Following the same function, we now need to display the right set of fields.
Depending on the value of $tab, we would display the fields for the
settings tab for the home page or for one of the other tabs:

<form method="post" action="<?php admin_url('themes.php?
page=theme-settings'); ?>">
<?php
wp_nonce_field("ilc-settings-page");

if ($pagenow == 'themes.php' && $_GET['page'] == 'theme-
settings'){

 if (isset ($_GET['tab'])) $tab = $_GET['tab'];
 else $tab = 'homepage';

 echo '<table class="form-table">';
 switch ($tab){
 case 'general' :
 ?>
 <tr>
 <th>Tags with CSS classes:</th>
 <td>
 <input id="ilc_tag_class" name="ilc_tag_class"
type="checkbox" <?php if ($settings["ilc_tag_class"]) echo
'checked="checked"'; ?> value="true" />
 <label for="ilc_tag_class">Checking this will
output each post tag with a specific CSS class based on its
slug.</label>

Smashing eBook #12│WordPress Tutorials │ 23

 </td>
 </tr>
 <?php
 break;
 case 'footer' :
 ?>
 <tr>
 <th><label for="ilc_ga">Insert tracking code:</
label></th>
 <td>
 Enter your Google Analytics tracking code:
 <textarea id="ilc_ga" name="ilc_ga" cols="60"
rows="5"><?php echo
esc_html(stripslashes($settings["ilc_ga"])); ?></
textarea>

 </td>
 </tr>
 <?php
 break;
 case 'homepage' :
 ?>
 <tr>
 <th><label for="ilc_intro">Introduction</label></
th>
 <td>
 Enter the introductory text for the home page:
 <textarea id="ilc_intro" name="ilc_intro"
cols="60" rows="5" ><?php echo
esc_html(stripslashes($settings["ilc_intro"])); ?></
textarea>
 </td>
 </tr>
 <?php
 break;
 }
 echo '</table>';
}

?>
 <p class="submit" style="clear: both;">
 <input type="submit" name="Submit" class="button-
primary" value="Update Settings" />

Smashing eBook #12│WordPress Tutorials │ 24

 <input type="hidden" name="ilc-settings-submit"
value="Y" />
 </p>
</form>

All of the settings will be stored in a single array in order to prevent several
queries from being made.

Saving !e Tabbed Fields
Now we need to know which slots of the array to save. Depending on the
tab being displayed, certain options stored in the settings array will be
displayed. If we just save all of the array slots, then we would overwrite
some of the positions not shown in the current tab and thus not meant to be
saved.function ilc_save_theme_settings() {

 global $pagenow;
 $settings = get_option("ilc_theme_settings");

 if ($pagenow == 'themes.php' && $_GET['page'] == 'theme-
settings'){
 if (isset ($_GET['tab']))
 $tab = $_GET['tab'];
 else
 $tab = 'homepage';

 switch ($tab){
 case 'general' :
 $settings['ilc_tag_class'] = $_POST['ilc_tag_class'];
 break;
 case 'footer' :
 $settings['ilc_ga'] = $_POST['ilc_ga'];
 break;
 case 'homepage' :
 $settings['ilc_intro'] = $_POST['ilc_intro'];
 break;
 }
 }
 //code to filter html goes here

Smashing eBook #12│WordPress Tutorials │ 25

 $updated = update_option("ilc_theme_settings",
$settings);
}

We’ve used a switch conditional again to query the value of $tab and
store the right values in the array. After that, we’ve updated the option in the
WordPress database.

Redirecting !e User To !e Right Tab
Now that the contents are saved, we need WordPress to redirect the user
back to the appropriate tab on the settings page.

function ilc_load_settings_page() {
 if ($_POST["ilc-settings-submit"] == 'Y') {
 check_admin_referer("ilc-settings-page");
 ilc_save_theme_settings();

 $url_parameters = isset($_GET['tab'])? 'updated=true&tab='.
$_GET['tab'] : 'updated=true';
 wp_redirect(admin_url('themes.php?page=theme-settings&'.
$url_parameters));
 exit;
 }
}

Depending on whether the $_GET['tab'] variable is set, we use
wp_redirect to send the user either to the default tab or to one of the
other tabs.

Now our tabs are working, displaying the right set of fields, saving the right
fields, and then redirecting the user to the correct tab.

Smashing eBook #12│WordPress Tutorials │ 26

Download !e !eme
Almost any theme with a moderate number of options would benefit from
tabs on the settings page. Just remember that this is one approach. Another
approach would be to add several collapsable meta boxes, as seen on the
page for writing posts, and to automatically collapse the boxes that are not
frequently used. However, tabs enable you to better separate each set of
options.

Finally, here is the theme, so that you can take a closer look:

• Theme with tabbed settings page

The theme also implements the function whereby each tag is outputted with
a unique CSS class, so you can check that out, too.

Smashing eBook #12│WordPress Tutorials │ 27

http://media.smashingmagazine.com/wp-content/uploads/2011/10/Sample-Theme_tabbed.zip
http://media.smashingmagazine.com/wp-content/uploads/2011/10/Sample-Theme_tabbed.zip
http://www.ilovecolors.com.ar/tag-class/
http://www.ilovecolors.com.ar/tag-class/
http://www.ilovecolors.com.ar/tag-class/
http://www.ilovecolors.com.ar/tag-class/

Create Native Admin Tables In
WordPress !e Right Way

Jeremy Desvaux de Marigny

List tables are a common element in WordPress’ administration interface.
They are used on nearly all default admin pages with lists, and developers
often integrate them into their plugins. But creating one of these tables is
not really intuitive if you haven’t done it before, and I’ve seen people try to
replicate it by using WordPress CSS classes in custom markup and even by
replicating the CSS from scratch.

Smashing eBook #12│WordPress Tutorials │ 28

In this chapter, we’ll see how WordPress provides functionality that can be
used to generate native admin tables. We’ll look at a typical WordPress
table and its different components and show how to implement it the right
way.

Presentation Of A WordPress Table
To better understand the various elements we’ll be talking about, let’s take
the default link manager that you see when you click “Links” in the admin
menu. Here’s what you see:

The default page for managing links in WordPress 3.2.

As you can see, a few different elements precede the table that enable you
to perform actions on the table. Then we have the table’s header, the rows,
the table’s footer and, finally, some more actions.

Smashing eBook #12│WordPress Tutorials │ 29

BEFORE AND AFTER THE TABLE

WordPress’ admin interface is consistent, so you’ll get used to finding
elements in certain places as you navigate.

Before and after the admin tables, for example, are where you would usually
find options to take action on the table. These include bulk actions, which
enable you to edit and delete multiple posts and to filter the list based on a
certain criteria.

We’ll see in the second part of this chapter how to interact with these two
areas and how to display options there.

HEADER AND FOOTER

Speaking of consistency, every admin table in WordPress has a header and
footer.

Following the same logic, they display the the same information: the titles of
the columns. Some of the titles are simple and some are linked (meaning
that the table can be ordered according to that column).

THE CONTENT

Obviously, the reason you would create a table is to put some content in it.
This content would go in the rows between the header and footer.

How Is !is Done In WordPress?
As we’ve just seen, a WordPress table has three families of elements. Let’s
see how to achieve this, using a concrete example.

Smashing eBook #12│WordPress Tutorials │ 30

OUR EXAMPLE TABLE

Most of the time, the data we want to display will be in the form of a SQL
table. We’ll use the default links table in WordPress as our example, but the
concepts apply to any database table and could easily be adapted to your
needs. Our table will have the following structure:

This table contains some default data that will be perfect for testing.

USING THE LIST TABLE CLASS

To create an HTML table in WordPress, we don’t have to write a lot of
HTML. Instead, we can rely on the precious work of the WP_List_Table
class. As explained by the WordPress Codex, this class is a powerful tool for
generating tables.

It is tailored for back-end developers, so we can concentrate on the most
essential task (the treatment of the data), leaving the other tasks (such as
HTML rendering) to WordPress.

The WP_List_Table class is essentially a little framework whose
functionality we can rely on to prepare our table. This is an object-oriented
approach, because we’ll be creating an object that extends

Smashing eBook #12│WordPress Tutorials │ 31

http://codex.wordpress.org/Function_Reference/WP_List_Table
http://codex.wordpress.org/Function_Reference/WP_List_Table

WP_List_Table and using that, instead of using WP_List_Table
directly.

Let’s create a class Link_List_Table with a simple constructor:

class Link_List_Table extends WP_List_Table {

 /**
 * Constructor, we override the parent to pass our own
arguments
 * We usually focus on three parameters: singular and plural
labels, as well as whether the class supports AJAX.
 */
 function __construct() {
 parent::__construct(array(
 'singular'=> 'wp_list_text_link', //Singular label
 'plural' => 'wp_list_test_links', //plural label, also
this well be one of the table css class
 'ajax' => false //We won't support Ajax for this table
));
 }

}

This is the starting point of our table. We now have an object that has
access to the properties and methods of its parent, and we’ll customize it to
suit our needs.

Keeping in mind the three types of elements we saw earlier, let’s see now
what to add to our class to get the same result.

Smashing eBook #12│WordPress Tutorials │ 32

HOW TO ADD ELEMENTS BEFORE AND AFTER THE TABLE

To display content before or after the table, we need to add a method
named extra_tablenav to our class. This method can be implemented as
follows:

/**
 * Add extra markup in the toolbars before or after the list
 * @param string $which, helps you decide if you add the
markup after (bottom) or before (top) the list
 */
function extra_tablenav($which) {
 if ($which == "top"){
 //The code that goes before the table is here
 echo"Hello, I'm before the table";
 }
 if ($which == "bottom"){
 //The code that goes after the table is there
 echo"Hi, I'm after the table";
 }
}

The interesting thing here is that the extra_tablenav method takes one
parameter, named $which, and this function is called twice by
Link_List_Table, (once before the table and once after). When it’s
called before, the value of the $which parameter is top, and when it’s called
a second time, after the table, its value is bottom.

You can then use this to position the various elements that you’d like to
appear before and after the table.

This function exists in the parent WP_List_Table class in WordPress, but it
doesn’t return anything, so if you don’t override it, nothing bad will happen;
the table just won’t have any markup before or after it.

Smashing eBook #12│WordPress Tutorials │ 33

HOW TO PREPARE THE TABLE’S HEADER AND FOOTER

In the header and footer, we have the column’s headers, and some of them
are sortable.

We’ll add to our class a method named get_columns that is used to
define the columns:

/**
 * Define the columns that are going to be used in the table
 * @return array $columns, the array of columns to use with
the table
 */
function get_columns() {
 return $columns= array(
 'col_link_id'=>__('ID'),
 'col_link_name'=>__('Name'),
 'col_link_url'=>__('Url'),
 'col_link_description'=>__('Description'),
 'col_link_visible'=>__('Visible')
);
}

The code above will build an array in the form of
'column_name'=>'column_title'. This array would then be used by
your class to display the columns in the header and footer, in the order
you’ve written them, so defining that is pretty straightforward.

Plenty of fields are in the links table, but not all of them interest us. With our
get_columns method, we’ve chosen to display only a few of them: the ID,
the name, the URL, the description of the link, as well as whether the link is
visible.

Unlike the extra_tablenav method, the get_columns is a parent
method that must be overridden in order to work. This makes sense,
because if you don’t declare any columns, the table will break.

Smashing eBook #12│WordPress Tutorials │ 34

To specify the columns to which to add sorting functionality, we’ll add the
get_sortable columns method to our class:

/**
 * Decide which columns to activate the sorting functionality
on
 * @return array $sortable, the array of columns that can be
sorted by the user
 */
public function get_sortable_columns() {
 return $sortable = array(
 'col_link_id'=>'link_id',
 'col_link_name'=>'link_name',
 'col_link_visible'=>'link_visible'
);
}

Here again, we’ve built a PHP array. The model for this one is
'column_name'=>'corresponding_database_field'. In other
words, the column_name must be the same as the column name defined in
the get_columns method, and the corresponding_database_field must be
the same as the name of the corresponding field in the database table.

The code we have just written specifies that we would like to add sorting
functionality to three columns (“ID,” “Name” and “Visible”). If you don’t want
the user to be able to sort any columns or if you just don’t want to
implement this method, WordPress will just assume that no columns are
sortable.

At this point, our class is ready to handle quite a few things. Let’s look now
at how to display the data.

HOW TO DISPLAY THE TABLE’S ROWS

The first steps in preparing the list table are very quick. We just have to
tackle a few more things in the treatment of data.

Smashing eBook #12│WordPress Tutorials │ 35

To make the list table display your data, you’ll need to prepare your items
and assign them to the table. This is handled by the prepare_items
method:

/**
 * Prepare the table with different parameters, pagination,
columns and table elements
 */
function prepare_items() {
 global $wpdb, $_wp_column_headers;
 $screen = get_current_screen();

 /* -- Preparing your query -- */
 $query = "SELECT * FROM $wpdb->links";

 /* -- Ordering parameters -- */
 //Parameters that are going to be used to order the
result
 $orderby = !empty($_GET["orderby"]) ?
mysql_real_escape_string($_GET["orderby"]) : 'ASC';
 $order = !empty($_GET["order"]) ?
mysql_real_escape_string($_GET["order"]) : '';
 if(!empty($orderby) & !empty($order)){ $query.=' ORDER
BY '.$orderby.' '.$order; }

 /* -- Pagination parameters -- */
 //Number of elements in your table?
 $totalitems = $wpdb->query($query); //return the total
number of affected rows
 //How many to display per page?
 $perpage = 5;
 //Which page is this?
 $paged = !empty($_GET["paged"]) ?
mysql_real_escape_string($_GET["paged"]) : '';
 //Page Number
 if(empty($paged) || !is_numeric($paged) || $paged<=0)
{ $paged=1; }
 //How many pages do we have in total?
 $totalpages = ceil($totalitems/$perpage);
 //adjust the query to take pagination into account
 if(!empty($paged) && !empty($perpage)){
 $offset=($paged-1)*$perpage;

Smashing eBook #12│WordPress Tutorials │ 36

 $query.=' LIMIT '.(int)$offset.','.(int)$perpage;
 }

 /* -- Register the pagination -- */
 $this->set_pagination_args(array(
 "total_items" => $totalitems,
 "total_pages" => $totalpages,
 "per_page" => $perpage,
));
 //The pagination links are automatically built according
to those parameters

 /* -- Register the Columns -- */
 $columns = $this->get_columns();
 $_wp_column_headers[$screen->id]=$columns;

 /* -- Fetch the items -- */
 $this->items = $wpdb->get_results($query);
}

As you can see, this method is a bit more complex than the previous ones
we added to our class. So, let’s see what is actually happening here:

1. Preparing the query
The first thing to do is specify the general query that will return the
data. Here, it’s a generic SELECT on the links table.

2. Ordering parameters
The second section is for the ordering parameters, because we have
specified that our table can be sorted by certain fields. In this section,
we are getting the field (if any) by which to order our record
($_GET['order']) and the order itself ($_GET['orderby']). We
then adjust our query to take those into account by appending an
ORDER BY clause.

3. Pagination parameters
The third section deals with pagination. We specify how many items are

Smashing eBook #12│WordPress Tutorials │ 37

in our database table and how many to show per page. We then get
the current page number ($_GET['paged']) and then adapt the SQL
query to get the correct results based on those pagination parameters.

4. Registration
This part of the function takes all of the parameters we have prepared
and assigns them to our table.

5. Ready to go
Our list table is now set with all of the information it needs to display
our data. It knows what query to execute to get the records from the
database; it knows how many records will be returned; and all the
pagination parameters are ready. This is an essential method of your
list table class. If you don’t implement it properly, WordPress won’t be
able to retrieve your data. If the method is missing in your class,
WordPress will return an error telling you that the prepare_items
method must be overridden.

6. Displaying the rows
This is it! Finally, we get to the method responsible for displaying the
records of data. It is named display_rows and is implemented as
follows.

/**
 * Display the rows of records in the table
 * @return string, echo the markup of the rows
 */
function display_rows() {

 //Get the records registered in the prepare_items method
 $records = $this->items;

 //Get the columns registered in the get_columns and
get_sortable_columns methods
 list($columns, $hidden) = $this->get_column_info();

Smashing eBook #12│WordPress Tutorials │ 38

 //Loop for each record
 if(!empty($records)){foreach($records as $rec){

 //Open the line
 echo '< tr id="record_'.$rec->link_id.'">';
 foreach ($columns as $column_name =>
$column_display_name) {

 //Style attributes for each col
 $class = "class='$column_name column-$column_name'";
 $style = "";
 if (in_array($column_name, $hidden)) $style = '
style="display:none;"';
 $attributes = $class . $style;

 //edit link
 $editlink = '/wp-admin/link.php?
action=edit&link_id='.(int)$rec->link_id;

 //Display the cell
 switch ($column_name) {
 case "col_link_id": echo '< td '.
$attributes.'>'.stripslashes($rec->link_id).'< /td>'; break;
 case "col_link_name": echo '< td '.
$attributes.'><a href="'.$editlink.'"
title="Edit">'.stripslashes($rec->link_name).'< /
td>'; break;
 case "col_link_url": echo '< td '.
$attributes.'>'.stripslashes($rec->link_url).'< /td>'; break;
 case "col_link_description": echo '< td '.
$attributes.'>'.$rec->link_description.'< /td>'; break;
 case "col_link_visible": echo '< td '.
$attributes.'>'.$rec->link_visible.'< /td>'; break;
 }
 }

 //Close the line
 echo'< /tr>';
 }}
}

Smashing eBook #12│WordPress Tutorials │ 39

This function gets the data prepared by the prepare_items method and
loops through the different records to build the markup of the
corresponding table row.

With this method, you have great control over how to display the data. If you
do not wish to add this method to your class, then the class will use the
parent’s method to render the data in WordPress’ default style.

Your list table class is now finished and ready to be used on one of your
pages.

All of the methods we’ve added to our class already exist in the parent
WP_List_Table class. But for your child class to work, you must override
at least two of them: get_columns and prepare_items.

Implementation
Now that our list table class is ready, let’s see how we can use it on a page
of our choice.

WHERE DO WE WRITE IT?

The code that we’ll cover in this section has to be written on the page where
you want to display the admin table.

We’ll create a very simple demonstration plugin, named “Test WP List
Table.” Basically, this plugin will add a link in the WordPress “Plugins” sub-
menu. Our code will, therefore, be written in the plugin file.

Smashing eBook #12│WordPress Tutorials │ 40

BEFORE WE BEGIN

Important: the WP_List_Table class is not available in plugins by default.
You can use the following snippet to check that it is there:

//Our class extends the WP_List_Table class, so we need to
make sure that it's there
if(!class_exists('WP_List_Table')){
 require_once(ABSPATH . 'wp-admin/includes/class-wp-list-
table.php');
}

Also, if you have created your Links_List_Table class in an external file,
make sure to include it before you start instantiating.

INSTANTIATE THE TABLE

The first step is to create an instance of our list table class, then call the
prepare_items method to fetch the data to your table:

//Prepare Table of elements
$wp_list_table = new Links_List_Table();
$wp_list_table->prepare_items();

DISPLAY IT

The $wp_list_table object is now ready to display the table wherever
you want.

Build your page’s markup, and wherever you decide to display the table,
make a call to the display() method:

//Table of elements
$wp_list_table->display();

Smashing eBook #12│WordPress Tutorials │ 41

Calling the display() method will generate the full markup of the list table,
from the before-and-after area to the table’s content, and including the
table’s header and footer. It also automatically generates all pagination links
for you, so the result should look like this:

In the download accompanying this article, you’ll find the complete PHP file
containing the class definition and the example of its implementation. It is
named testWPListTable.php, and it is written in the form of a simple plugin
that you can put in your WordPress plugin folder and activate if you want to
see what it does.

Conclusion
Creating a PHP class merely to display a table of data might seem like
overkill. But this class is very easy to create and customize. And once it’s
done, you’ll be happy that the parts of tables that are difficult to implement,
such as pagination and reordering, are now taken care of.

Also, because the generated markup is exactly what WordPress supports, if
an update is released one day, your tables will remain in good shape.

The PHP code we’ve used is clean and easy to understand. And mastering
the default functionality won’t take a long time.

Smashing eBook #12│WordPress Tutorials │ 42

What we’ve seen today is the basic implementation of a WordPress list
table, but you can add other supported methods to the class for extra
functionality.

For more information, read the Codex page dedicated to WordPress list
tables, and have a look at another custom list table example.

I hope you’ve found this article useful, and I wish you good luck with list
tables!

Smashing eBook #12│WordPress Tutorials │ 43

http://codex.wordpress.org/Function_Reference/WP_List_Table
http://codex.wordpress.org/Function_Reference/WP_List_Table
http://codex.wordpress.org/Function_Reference/WP_List_Table
http://codex.wordpress.org/Function_Reference/WP_List_Table
http://wordpress.org/extend/plugins/custom-list-table-example
http://wordpress.org/extend/plugins/custom-list-table-example

How To Build A Media Site On WordPress
– Part 1

Jonathan Wold

WordPress is amazing. With its growing popularity and continual
development, it is becoming the tool of choice for many designers and
developers. WordPress projects, though, are pushing well beyond the
confines of mere “posts” and “pages”. How do you go about adding and
organizing media and all its complexities? With the introduction of
WordPress 3.1, several new features were added that make using
WordPress to manage media even more practical and in this tutorial, we’re
going to dive in and show you how.

Smashing eBook #12│WordPress Tutorials │ 44

In part 1, we’re going to setup custom post types and custom taxonomies,
without plugins. After that, we’ll build a template to check for and display
media attached to custom posts. Then, in part two, we’ll use custom
taxonomy templates to organize and relate media (and other types of
content).

As we focus on building a media centric site, I also want you to see that the
principles taught in this series offer you a set of tools and experience to
build interfaces for and organize many different types of content. Examples
include:

• A “Media” center, of any type, added to an existing WordPress site

• A repository of videos, third party hosted (e.g. Vimeo, YouTube, etc),
organized by topics and presenters

Smashing eBook #12│WordPress Tutorials │ 45

• A music site, with streaming and song downloads, organized by bands
and associated by albums

• An author-driven Q&A site, with user submitted questions organized by
topics and geographical location

• A recipe site with videos and visitor ratings, organized by category and
shared ingredients

In a future tutorial, we will focus on customizing the WordPress backend
(with clients especially in mind) to manage a media site and in another
tutorial we will use the foundation laid to build a dynamic filtering interface
that allows visitors to quickly sort their way through hundreds or even
thousands of custom posts.

REQUIREMENTS

• WordPress 3.1 – With the release of 3.1, several new features related to
the use of custom post types and taxonomies were introduced that are
essential to the techniques taught in this series.

• Basic Familiarity with PHP (or “No Fear”) – To move beyond copying
and pasting the examples I’ve given will require a basic familiarity with
PHP or, at least, a willingness to experiment. If the code samples below
are intimidating to you and you have the desire to learn, then I
encourage you to tackle it and give it your best. If you have questions,
ask in the comments.

WORKING EXAMPLE

In April, 2011 we (Sabramedia, of which I am a co-founder) worked with an
organization in Southern California to develop a resource center on

Smashing eBook #12│WordPress Tutorials │ 46

WordPress to showcase their paid and free media products. On the front-
end, we built a jQuery powered filtering interface to allow visitors to filter
through media on-page. We’ll cover the ins and outs of building a similar
interface in part three.

The “Resource Center” on ARISE, with a custom taxonomy filter (“David
Asscherick”) pre-selected.

Working With Custom Post Types
By default, WordPress offers two different types of posts for content. First,
you have the traditional “post”, used most often for what WordPress is
known best for – blogging. Second, you have “pages”. Each of these, as far
as WordPress is concerned, is a type of “post”. A custom post type is a type
of post that you define.

Smashing eBook #12│WordPress Tutorials │ 47

Note: You can learn more about post types on the WordPress Codex.

In this series, we are going to use custom post types to build a media based
resource center. I will be defining and customizing a post type of “resource”.

SETTING UP YOUR CUSTOM POST TYPE

You can setup your custom post types by code or by plugin. In these
examples, I will be setting up the post type by code, storing and applying
the code directly in the functions file on the default WordPress theme,
Twenty Ten. You can follow along by using a plugin to setup the post types
for you or by copying the code samples into the bottom of your theme’s
custom functions file (functions.php).

Note: As a best practice, unless you use an existing plugin to create the
post types, you may want to consider creating your own WordPress
plugin. Setting up custom post types and taxonomies separate from
your theme becomes important if and when you want to make major
changes to your theme or try a new theme out. Want to save some
typing? Use the custom post code generator.

Alright, let’s setup our custom post type. Paste the following code into your
theme’s functions.php:

add_action('init', 'register_rc', 1); // Set priority to avoid
plugin conflicts

function register_rc() { // A unique name for our function
 $labels = array(// Used in the WordPress admin
 'name' => _x('Resources', 'post type general name'),
 'singular_name' => _x('Resource', 'post type singular
name'),

Smashing eBook #12│WordPress Tutorials │ 48

http://codex.wordpress.org/Post_Types
http://codex.wordpress.org/Post_Types
http://wordpress.org/extend/themes/twentyten
http://wordpress.org/extend/themes/twentyten
http://justintadlock.com/archives/2011/02/02/creating-a-custom-functions-plugin-for-end-users
http://justintadlock.com/archives/2011/02/02/creating-a-custom-functions-plugin-for-end-users
http://justintadlock.com/archives/2011/02/02/creating-a-custom-functions-plugin-for-end-users
http://justintadlock.com/archives/2011/02/02/creating-a-custom-functions-plugin-for-end-users
http://themergency.com/generators/wordpress-custom-post-types/
http://themergency.com/generators/wordpress-custom-post-types/

 'add_new' => _x('Add New', 'Resource'),
 'add_new_item' => __('Add New Resource'),
 'edit_item' => __('Edit Resource'),
 'new_item' => __('New Resource'),
 'view_item' => __('View Resource '),
 'search_items' => __('Search Resources'),
 'not_found' => __('Nothing found'),
 'not_found_in_trash' => __('Nothing found in Trash')
);
 $args = array(
 'labels' => $labels, // Set above
 'public' => true, // Make it publicly accessible
 'hierarchical' => false, // No parents and children here
 'menu_position' => 5, // Appear right below "Posts"
 'has_archive' => 'resources', // Activate the archive
 'supports' =>
array('title','editor','comments','thumbnail','custom-
fields'),
);
 register_post_type('resource', $args); // Create the post
type, use options above
}

The code above tells WordPress to “register” a post type called “resource”.
Then, we pass in our options, letting WordPress know that we want to use
our own labels, that we want our post type to be publicly accessible, non-
hierarchal, and that we want it to show up right below “posts” in our admin
menu. Then, we activate the “archive” feature, new in WordPress 3.1. Finally,
we add in “supports”: the default title field, the WordPress editor, comments,
featured thumbnail, and custom fields (I’ll explain that later).

Note: For more information on setting up the post type and for details
on all the options you have (there are quite a few available), refer to the
register_post_type function reference on the WordPress Codex.

Smashing eBook #12│WordPress Tutorials │ 49

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type

If the code above was successful, you will see a new custom post type,
appearing below “Posts” in the WordPress admin menu. It will look
something like this:

A view of the WordPress Admin, after adding a custom post type

We’re in good shape! Next, let’s setup our custom taxonomies.

Working With Custom Taxonomies
A “taxonomy” is a way of organizing and relating information. WordPress
offers two default taxonomies, categories and tags. Categories are
hierarchal (they can have sub-categories) and are often used to organize
content on a more broad basis. Tags, are non-hierarchal (no sub-tags) and
are often used to organize content across categories.

A “term” is an entry within a taxonomy. For a custom taxonomy of
“Presenters”, “John Smith” would be a term within that taxonomy.

In this series, we will be creating two different custom taxonomies to
organize the content within our resource center.

Smashing eBook #12│WordPress Tutorials │ 50

• Presenters – Each media item in our resource center will have one or
more presenters. For each presenter, we want to know their name and
we want to include a short description. Presenters will be non-
hierarchal.

• Topics – Our resource center will offer media organized by topics.
Topics will be hierarchal, allowing for multiple sub-topics and even sub-
sub-topics.

Note: Interested in working with more than the title and short
description? Take a look at How To Add Custom Fields To Custom
Taxonomies on the Sabramedia blog.

SETTING UP PRESENTERS

Our goal with presenters is to create a presenter profile, referenced on the
respective media pages, that will give more information about the presenter
and cross-reference other resources that they are associated with.

Add the following code to your theme’s functions.php file:

$labels_presenter = array(
 'name' => _x('Presenters', 'taxonomy general name'),
 'singular_name' => _x('Presenter', 'taxonomy singular
name'),
 'search_items' => __('Search Presenters'),
 'popular_items' => __('Popular Presenters'),
 'all_items' => __('All Presenters'),
 'edit_item' => __('Edit Presenter'),
 'update_item' => __('Update Presenter'),
 'add_new_item' => __('Add New Presenter'),
 'new_item_name' => __('New Presenter Name'),
 'separate_items_with_commas' => __('Separate presenters
with commas'),
 'add_or_remove_items' => __('Add or remove presenters'),

Smashing eBook #12│WordPress Tutorials │ 51

http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies
http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies
http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies
http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies

 'choose_from_most_used' => __('Choose from the most used
presenters')
);

register_taxonomy(
 'presenters', // The name of the custom taxonomy
 array('resource'), // Associate it with our custom post
type
 array(
 'rewrite' => array(// Use "presenter" instead of
"presenters" in the permalink
 'slug' => 'presenter'
),
 'labels' => $labels_presenter
)
);

Let’s break that down. First, we setup the labels to be used when we
“register”our taxonomy. Then, we give it a name, in this case “presenters”,
and assign it to the post type of “resource”. If you had multiple post types,
you would add them in with a comma, like this:

array('resource', 'other-type'), // Associate it with our
custom post types

After that, we change the URL (or “permalink”) to satisfy our desire for
grammatical excellence. Rather than being “/presenters/presenter-name”
we update the “slug” (what is a slug?) to remove the “s” so that the
permalink will read “/presenter/presenter-name”.

In our example, you should now notice a new menu option labeled
“Presenters” under “Resources” in the admin sidebar. When you go to
create a new resource you should also notice a meta box on the right side
that looks like this:

Smashing eBook #12│WordPress Tutorials │ 52

http://codex.wordpress.org/Glossary%23Slug
http://codex.wordpress.org/Glossary%23Slug

My custom taxonomy of “Presenters” now shows up between the “Publish” box
and “Featured Image”.

Note: To learn more about setting up custom taxonomies and the
options available, take a look at the register_taxonomy function
reference on the WordPress Codex.

SETTING UP TOPICS

Our goal with topics is to allow for a hierarchal set of topics and sub-topics,
each with their own page, showing the resources that are associated with
each respective topic.

Add the following code to your theme’s functions.php file:

$labels_topics = array(
 'name' => _x('Topics', 'taxonomy general name'),
 'singular_name' => _x('Topic', 'taxonomy singular name'),
 'search_items' => __('Search Topics'),
 'all_items' => __('All Topics'),
 'parent_item' => __('Parent Topic'),

Smashing eBook #12│WordPress Tutorials │ 53

http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy

 'parent_item_colon' => __('Parent Topic:'),
 'edit_item' => __('Edit Topic'),
 'update_item' => __('Update Topic'),
 'add_new_item' => __('Add New Topic'),
 'new_item_name' => __('New Topic Name'),
);

register_taxonomy(
 'topics', // The name of the custom taxonomy
 array('resource'), // Associate it with our custom post
type
 array(
 'hierarchical' => true,
 'rewrite' => array(
 'slug' => 'topic', // Use "topic" instead of "topics"
in permalinks
 'hierarchical' => true // Allows sub-topics to appear
in permalinks
),
 'labels' => $labels_topics
)
);

That was easy enough! The code above is similar to setting up presenters,
except this time we are using a few different labels, specific to hierarchal
taxonomies. We set hierarchal to true (it’s set to “false” by default), we
update the slug to be singular instead of plural, then, just before referencing
our labels, we set the rewriting to be hierarchal. A hierarchal rewrite allows
permalinks that look like this: /topic/topic-name/sub-topic-name.

With the above code implemented, you should notice another option below
“Resources” in the WordPress admin and a new meta box that looks like
this:

Smashing eBook #12│WordPress Tutorials │ 54

My custom taxonomy of “Topics” now shows up, albeit a bit empty looking, below
“Presenters”.

Adding Custom Fields To Custom Post Types
In many cases, the “title” and “editor” (the default content editor in
WordPress) aren’t going to be enough. What if you want to store extra
information about a particular custom post? Examples might include:

• Duration of a media file – HH:MM:SS format, useful to pre-populate your
media player with the duration on page load.

• Original recording date – Stored as a specific date with day, month, and
year.

We call this “meta” information and it is a set of details that are specific to
the individual item and usually make the most sense to store as meta data,
as opposed to terms within a custom taxonomy. While you could put all

Smashing eBook #12│WordPress Tutorials │ 55

these details in the “editor” field, it gives you very little flexibility with how
this is displayed within your template.

So, let’s setup some custom fields. Use the custom fields interface at the
bottom of an individual custom post to add some extra details about your
custom post.

For our example, we’re going to add two fields. For each field, I will list the
name, then an example value:

• recording_length - Example: 00:02:34

• recording_date – Example: March 16, 2011

Here’s how that looks after adding two custom fields:

An example of the custom fields interface after adding two “keys” and their
respective “values”

Smashing eBook #12│WordPress Tutorials │ 56

Note: The default custom fields interface can be a bit limiting. If you’d
like to make use of a plugin, try More Fields. The functionality is the
same (just be mindful of what you name your custom fields) – a plugin
typically offers you a better interface. If you want to build your own
interface, take a look at WP Alchemy. To learn more about using custom
fields, take a look at using custom fields on the WordPress Codex.

CUSTOM TAXONOMIES VS. CUSTOM FIELDS

At this point, you may run into a situation where you’re uncertain whether a
particular piece of information should be stored as a custom taxonomy or as
a custom field. Let’s use the recording date as an example. If we were to log
the complete date, then it would probably make the most sense to store it
within a custom field on the individual item. If we were to just use the year,
though, we could store it as a term within a custom taxonomy (we’d
probably call it “year”) and use it to show other resources recorded that
same year.

The question is whether or not you want to relate content (in our case,
“resources”) by the information you’re considering. If you don’t see any
need to relate content (and don’t have plans to) then a custom field is the
way to go. If you have a need to relate content or see a potential need down
the road, then a custom taxonomy is the way to go.

Media Storage – WordPress vs. !ird Party
Now that we have our custom post type and custom taxonomies in place,
it’s time to upload some media. Our goal is to make this as simple a process
for the end-user as possible. There are two ways that we can manage the
media, either directly within WordPress or via third party.

Smashing eBook #12│WordPress Tutorials │ 57

http://wordpress.org/extend/plugins/more-fields/
http://wordpress.org/extend/plugins/more-fields/
http://www.farinspace.com/wpalchemy-metabox/
http://www.farinspace.com/wpalchemy-metabox/
http://codex.wordpress.org/Using_Custom_Fields
http://codex.wordpress.org/Using_Custom_Fields

• WordPress Managed - WordPress has a media management system
built-in. You can upload media directly from your post type interface or
from the “media” section in the WordPress admin. If storage or
bandwidth becomes an issue, you can use a plugin (such as WP Super
Cache) to offload the storage of the media to a third party content
delivery network (CDN) to optimize delivery speed and save on
bandwidth.

• Third Party – Going this route, you can use a media hosting service like
YouTube, Vimeo, Scribd (PDFs), Issuu (ebooks), or any media hosting
service that offers you an embed option.

Going the internal route, the media is stored inside of WordPress and
associated with the individual custom post. We then access it as an
attachment within the template. Going the third party route, we get the
embed code (or the media ID) and store it inside of WordPress within a
custom field. We’ll look at examples of both options further on.

Preparing !e Stage – Adding New Media
We’re about to start working with the templates. Before we do that, though,
we need to have some media to work with within our new custom post type.
Before proceeding, make sure you’ve done the following:

• Create a new “resource” post (or whatever your post type may be) and
give it a title and a description in the main content editor.

• Associate your resource with a non-hierarchical custom taxonomy
you’ve created (e.g. A presenter named “Jonathan Wold”).

• Associate your resource with a hierarchical custom taxonomy you’ve
created (e.g. A topic of “Family” and a sub-topic of “Children”)

Smashing eBook #12│WordPress Tutorials │ 58

http://wordpress.org/extend/plugins/wp-super-cache/
http://wordpress.org/extend/plugins/wp-super-cache/
http://wordpress.org/extend/plugins/wp-super-cache/
http://wordpress.org/extend/plugins/wp-super-cache/

• Add one or more custom fields with a unique “key” and “value” (e.g. a
key of “recording_duration” and a value of “00:02:34″).

• Upload a video file to your custom post using the WordPress media
manager (click the “video” icon just below the title field and right above
the editor).

Note #1: If you’re hosting your videos via third party, create a custom
field to hold either the entire embed code or the ID of the video. I’ll give
you an example using Vimeo a bit later that will use the video ID.

Note #2: Depending on your hosting provider, you may run into trouble
with a default upload limit, often 2MB or 8MB. Check out how to
increase the WordPress upload limit.After you’ve created a new post,
previewing it should show you a screen, depending on your theme, will
look something like this:

A preview of my custom post, displaying title and description, on the Twenty Ten
theme.

Smashing eBook #12│WordPress Tutorials │ 59

http://www.wordimpressed.com/coding/how-to-increase-wordpress-file-upload-size-correctly/
http://www.wordimpressed.com/coding/how-to-increase-wordpress-file-upload-size-correctly/

Note: If you preview your post and get a “404″ error, you may need to
update your Permalinks. From the WordPress Admin, Go to “Settings”,
then “Permalinks”, and click “Save Changes”. Refresh and you should
be good to go.

Displaying Our Media – Working With Custom Post
Templates
If you previewed your custom post, you probably saw something similar to
what I showed in my example – not much. Where are the custom taxonomy
terms, custom fields, and videos? Missing – but not for long! In the following
steps, we’re going to create a custom template that tells WordPress what
data to display and how to display it.

CREATING A CUSTOM POST TYPE TEMPLATE

The WordPress template engine has a hierarchy that it follows when
deciding what theme template it uses to display data associated with a post.
In the case of our “resource” post type, the WordPress hierarchy (as of 3.1) is
as follows:

• single-resource.php – WordPress will check the theme folder for a file
named single-resource.php, if it exists, it will use that file to display the
content. For different post types, simple replace “resource” with the
name of your custom post type.

• single.php – If no post type specific template is found, the default
single.php is used. This is what you probably saw if you did an early
preview.

Smashing eBook #12│WordPress Tutorials │ 60

• index.php – If no single template is found, WordPress defaults to the
old standby – the index.

I’ll be using minimal examples for each of the templates, modified to work
with Twenty Ten. Each example will replace and build on the previous
example. Expand to your heart’s content or copy the essentials into your
own theme.

To get started with our example, create a file called single-resource.php
and upload it to your theme folder. Add the following code:

<?php get_header(); ?>

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-content">
 <?php the_content();?>
 </div>
 </div>

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

The code above will give you a rather unexciting, but working template that
will display the title and content (drawn directly from the main editor). What
about our custom fields? Let’s add them in next.

Replace the code in single-resource.php with the following:

Smashing eBook #12│WordPress Tutorials │ 61

<?php get_header(); ?>

<?php // Let's get the data we need
 $recording_date = get_post_meta($post->ID,
'recording_date', true);
 $recording_length = get_post_meta($post->ID,
'recording_length', true);
?>

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-meta">
 Recorded: <?php echo $recording_date ?>
|
 Duration: <?php echo $recording_length ?
>
 </div>
 <div class="entry-content">
 <?php the_content();?>
 </div>
 </div>

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

We’re making progress! Now, using the examples above, you should see
the date your resource was published and the duration of the media file.

Let’s take a look at how that works. In WordPress, data stored in custom
fields can be accessed several ways. Here, we are using a function called
get_post_meta. This function requires two parameters, the unique ID of the

Smashing eBook #12│WordPress Tutorials │ 62

http://codex.wordpress.org/Function_Reference/get_post_meta
http://codex.wordpress.org/Function_Reference/get_post_meta

post you want to get the data from and the name of the field (its “key”)
whose data you’re after. Here’s the code again:

$recording_date = get_post_meta($post->ID, 'recording_date',
true);

First, we set a variable with PHP – we name it “$recording_date”. Then, we
use the “get_post_meta” function. Remember, it needs two parameters, ID
and the “key” of the field we want. “$post->ID” tells WordPress to use the ID
of the post it is currently displaying. If we wanted to target a specific post,
we’d put its ID instead:

$recording_date = get_post_meta(35, 'recording_date',
true); // Get the date from post 35

The next parameter is the “key”, or “name” of our custom field. Be sure you
get that right. The last parameter tells the function to return the result as a
single “string” – something that we can use as text in our template below.
To display our data in the template, we write:

<?php echo $recording_date ?>

Ok, let’s keep going and get our custom taxonomies showing up.

Replace the code in single-resource.php with the following:

<?php get_header(); ?>

<?php // Let's get the data we need
 $recording_date = get_post_meta($post->ID,
'recording_date', true);
 $recording_length = get_post_meta($post->ID,
'recording_length', true);
 $resource_presenters = get_the_term_list($post->ID,
'presenters', '', ', ', '');
 $resource_topics = get_the_term_list($post->ID, 'topics',
'', ', ', '');
?>

Smashing eBook #12│WordPress Tutorials │ 63

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-meta">
 Recorded: <?php echo $recording_date ?>
|
 Duration: <?php echo $recording_length ?
> |
 Presenters: <?php echo
$resource_presenters ?> |
 Topics: <?php echo $resource_topics ?></
span>
 </div>
 <div class="entry-content">
 <?php the_content();?>
 </div>
 </div>

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

Now we’re starting to get more dynamic. You should see your custom fields
and, assuming that your custom post has “presenters” and “topics”
associated with it, you should see a list of one or more custom taxonomy
terms as links. If you clicked the link, you probably saw a page that didn’t
look quite what you expected – we’ll get to that soon. Check out
get_the_term_list on the WordPress Codex to learn more about how it
works.

Smashing eBook #12│WordPress Tutorials │ 64

http://codex.wordpress.org/Function_Reference/get_the_term_list
http://codex.wordpress.org/Function_Reference/get_the_term_list

Adding A Media Player
Now that we have some basic data in place, it’s time to add our media
player. In this example, we will be working with the JW Media Player, a
highly customizable open-source solution.

INSTALLING JW MEDIA PLAYER

You can access basic installation instructions here. I recommend the
following steps:

• Download the player from the Longtail Video website.

• Create a folder within your theme to hold the player files – In this case,
I’ve named the folder “jw”.

• Upload jwplayer.js and player.swf to the JW Player folder within your
theme.

JW Player is now installed and ready to be referenced.

Now, replace the code in single-resource.php with the following:

<?php get_header(); ?>

<?php // Let's get the data we need
 $recording_date = get_post_meta($post->ID,
'recording_date', true);
 $recording_length = get_post_meta($post->ID,
'recording_length', true);
 $resource_presenters = get_the_term_list($post->ID,
'presenters', '', ', ', '');
 $resource_topics = get_the_term_list($post->ID, 'topics',
'', ', ', '');

 $resource_video = new WP_Query(// Start a new query for our
videos

Smashing eBook #12│WordPress Tutorials │ 65

http://www.longtailvideo.com/support/jw-player/jw-player-for-flash-v5/12/install-the-jw-player-for-flash-v5
http://www.longtailvideo.com/support/jw-player/jw-player-for-flash-v5/12/install-the-jw-player-for-flash-v5
http://www.longtailvideo.com/players/jw-flv-player/
http://www.longtailvideo.com/players/jw-flv-player/

 array(
 'post_parent' => $post->ID, // Get data from the current
post
 'post_type' => 'attachment', // Only bring back
attachments
 'post_mime_type' => 'video', // Only bring back
attachments that are videos
 'posts_per_page' => '1', // Show us the first result
 'post_status' => 'inherit', // Attachments require
"inherit" or "all"
)
);
?>

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-meta">
 Recorded: <?php echo $recording_date ?>
|
 Duration: <?php echo $recording_length ?
> |
 Presenters: <?php echo
$resource_presenters ?>
 </div>
 <div class="entry-content">
 <?php while ($resource_video-
>have_posts()) : $resource_video->the_post(); ?>
 <p>Video URL: <?php echo $post->guid; ?></
p>
 <?php endwhile; ?>

 <?php wp_reset_postdata(); // Reset the loop ?
>

 <?php the_content(); ?>
 </div>
 </div>

Smashing eBook #12│WordPress Tutorials │ 66

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

Note: You may notice the somewhat mysterious reference to
“wp_reset_postdata”. We are creating a loop within a loop and, to
prevent strange behavior with template tags like “the_content” (try
removing “wp_reset_postdata” to see what happens), we need to run a
reset after any new loops we add within the main loop. Learn more
about the loop on the WordPress Codex.

Now we’re getting somewhere! If everything went as expected, you should
see a direct, plain text URL to your video. That’s not very exciting (yet), but
we want to make sure we are getting that far before we add in the next step
– the player.

If you’re having trouble at this point, check back through your code and look
for any mistakes that may have been made. If you are trying to vary widely
from this example, simplify your variations and start as close to this example
as you can – get that to work first then branch back out.

With the URL to our video available, we are ready to add in the player. Let’s
go!

Replace the code in single-resource.php with the following:

<?php get_header(); ?>

<?php // Let's get the data we need

Smashing eBook #12│WordPress Tutorials │ 67

http://codex.wordpress.org/The_Loop
http://codex.wordpress.org/The_Loop
http://codex.wordpress.org/The_Loop
http://codex.wordpress.org/The_Loop

 $recording_date = get_post_meta($post->ID,
'recording_date', true);
 $recording_length = get_post_meta($post->ID,
'recording_length', true);
 $resource_presenters = get_the_term_list($post->ID,
'presenters', '', ', ', '');
 $resource_topics = get_the_term_list($post->ID, 'topics',
'', ', ', '');

 $resource_video = new WP_Query(// Start a new query for our
videos
 array(
 'post_parent' => $post->ID, // Get data from the current
post
 'post_type' => 'attachment', // Only bring back
attachments
 'post_mime_type' => 'video', // Only bring back
attachments that are videos
 'posts_per_page' => '1', // Show us the first result
 'post_status' => 'inherit', // Attachments require
"inherit" or "all"
)
);
?>

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-meta">
 Recorded: <?php echo $recording_date ?>
|
 Duration: <?php echo $recording_length ?
> |
 Presenters: <?php echo
$resource_presenters ?> |
 Topics: <?php echo $resource_topics ?></
span>
 </div>

Smashing eBook #12│WordPress Tutorials │ 68

 <div class="entry-content">
 <?php while ($resource_video->have_posts()) :
$resource_video->the_post(); // Check for our video ?>
 <div id="player">
 <script type="text/javascript" src="<?php
bloginfo('stylesheet_directory'); ?>/jw/jwplayer.js"></script>
 <div id="mediaspace">Video player loads
here.</div>
 <script type="text/javascript">
 jwplayer("mediaspace").setup({
 flashplayer: '<?php
bloginfo('stylesheet_directory'); ?>/jw/player.swf',
 file: '<?php echo $post->guid; ?
>',
 width: 640,
 height: 360
 });
 </script>
 </div>
 <?php endwhile; ?>

 <?php wp_reset_postdata(); // Reset the loop ?>

 <?php the_content(); ?>
 </div>
 </div>

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

Note carefully the assumptions I’m making in the code above. First, I am
assuming that you are storing the JW player files in a folder called “jw”
inside the WordPress theme folder of the currently activated theme. If you
load the page and the player is not working (and you did have the video
URL displaying in the previous step), view the source code on your page,
copy the URLs that WordPress is generating to your respective JW player

Smashing eBook #12│WordPress Tutorials │ 69

files (jwplayer.js and player.swf) and try accessing them in your browser to
make sure each is valid. If there is a problem, update your references
accordingly.

Otherwise, there you have it! Your video details and the video itself is now
displaying on the page and you should see something like this:

A view of the player, complete with title, description, custom field values and
custom taxonomies terms.

Note: There is a lot that you can do to customize the appearance and
behavior of the JW Player. A good place to start is the JW Player Setup

Smashing eBook #12│WordPress Tutorials │ 70

http://www.longtailvideo.com/support/jw-player-setup-wizard
http://www.longtailvideo.com/support/jw-player-setup-wizard

Wizard. Customize the player to your liking, then implement the code
changes in your template accordingly.

USING VIMEO INSTEAD

Let’s say you wanted to use Vimeo, instead of uploading the videos into
WordPress. First, you need to add a custom field to store the ID of your
Vimeo video. Assuming you’ve done that, and assuming that you’ve entered
a valid Vimeo ID in your custom field (we named the field “vimeo_id” in our
example), the following code will work:

<?php get_header(); ?>

<?php // Let's get the data we need
 $recording_date = get_post_meta($post->ID,
'recording_date', true);
 $recording_length = get_post_meta($post->ID,
'recording_length', true);
 $resource_presenters = get_the_term_list($post->ID,
'presenters', '', ', ', '');
 $resource_topics = get_the_term_list($post->ID, 'topics',
'', ', ', '');

 $vimeo_id = get_post_meta($post->ID, 'vimeo_id', true);
?>

 <div id="container">
 <div id="content">
 <?php if (have_posts()) while (have_posts()) :
the_post(); ?>

 <div class="resource">
 <h1 class="entry-title"><?php the_title(); ?></
h1>
 <div class="entry-meta">
 Recorded <?php echo $recording_date ?> |

 Duration: <?php echo $recording_length ?
> |

Smashing eBook #12│WordPress Tutorials │ 71

http://www.longtailvideo.com/support/jw-player-setup-wizard
http://www.longtailvideo.com/support/jw-player-setup-wizard

 Presenters: <?php echo
$resource_presenters ?> |
 Topics: <?php echo $resource_topics ?></
span>
 </div>

 <div class="entry-content">
 <?php if ($vimeo_id) { // Check for a video ?>
 <iframe src="http://player.vimeo.com/
video/<?php echo $vimeo_id; ?>?byline=0&title=0&portrait=0"
width="640" height="360" frameborder="0" class="vimeo"></
iframe>
 <?php } ?>

 <?php the_content(); ?>
 </div>
 </div>

 <?php endwhile; ?>
 </div>
 </div>

<?php get_sidebar(); ?>
<?php get_footer(); ?>

We use “$vimeo_id” to retrieve and store the ID from our custom field
(named “vimeo_id”, in this case) and then, in the code below, we first check
to make sure the $vimeo_id field has data in it, then we use Vimeo’s iframe
code (details here) to load the video.

In Vimeo’s case, the ID is a series of numbers (notice the selected text) after
“vimeo.com/”.

Smashing eBook #12│WordPress Tutorials │ 72

http://player.vimeo.com/video/
http://player.vimeo.com/video/
http://player.vimeo.com/video/
http://player.vimeo.com/video/
http://vimeo.com/blog:334
http://vimeo.com/blog:334

Conclusion
And that concludes part one! You’ve learned how to setup custom post
types and custom taxonomies without using plugins. You’ve also learned
how to setup custom fields and display their data, along with a video player
and custom taxonomy terms, within a custom post template. In part two,
we’ll look at how to customize the custom taxonomy templates and make
them a whole lot more useful.

Smashing eBook #12│WordPress Tutorials │ 73

How To Build A Media Site On WordPress
– Part 2

Jonathan Wold

The default “category” and “tag” taxonomies in WordPress offer a lot of
flexibility to those with imagination and in my development experience I
have seen a wide range of creative implementations.

With the introduction of custom taxonomies and their growing ease of use,
though, we need no longer be bound to categories and tags. With the ability
to create both hierarchical and non-hierarchical taxonomies and with the
introduction of several new features in WordPress 3.1, now is the time, if
you’re not already, to begin putting custom taxonomies to use.

In part one of this two part series, we learned how to setup custom post
types and custom taxonomies. We also learned how to build a template to
check for and display media attached to custom posts. Now, we’ll learn how
to use custom taxonomy templates to organize and relate our media. Let’s
get started!

Smashing eBook #12│WordPress Tutorials │ 74

Organizing Our Media – Working With Custom
Taxonomy Templates
Now that we have our media displaying, it’s time to work on how it’s
organized. If you tried clicking on one of the custom taxonomy terms, odds
are the result weren’t very exciting. You probably saw something like this:

Smashing eBook #12│WordPress Tutorials │ 75

A rather unhelpful default view of a term in the “presenter” taxonomy.

What we’re going to do next is create a template that allows us to customize
the results and offer a page that will be more useful.

CREATING A CUSTOM TAXONOMY TEMPLATE

As with custom posts, the WordPress template engine has a custom
taxonomy template hierarchy that it follows to determine what template it
uses to display data associated with a custom taxonomy term. We’ll start
with our “presenters” taxonomy. In our case, the WordPress hierarchy is as
follows:

• taxonomy-presenters.php – WordPress will check the theme folder for
a file named taxonomy-presenters.php. If it exists, it will use that
template to display the content. For different custom taxonomies,
simple replace “presenters” with the name of your custom taxonomy.

• taxonomy.php - If no custom taxonomy template is found, WordPress
checks for a general taxonomy template.

• archive.php – If no general taxonomy template is used, the WordPress
archive template is used.

Smashing eBook #12│WordPress Tutorials │ 76

http://codex.wordpress.org/Template_Hierarchy%23Custom_Taxonomies_display
http://codex.wordpress.org/Template_Hierarchy%23Custom_Taxonomies_display
http://codex.wordpress.org/Template_Hierarchy%23Custom_Taxonomies_display
http://codex.wordpress.org/Template_Hierarchy%23Custom_Taxonomies_display

• index.php – If no archive template is found, WordPress defaults to the
old standby – the index.

Note: The WordPress template hierarchy structure also allows
templates for specific terms. For instance, in a case where “Jonathan
Wold” was a term in the “presenters” taxonomy, I could create a custom
template called “taxonomy-presenters-jonathan-wold.php”.

Non-Hierarchical Custom Taxonomy Templates
We’ll start with the non-hierarchical “presenters” custom taxonomy. As with
the custom post type examples previously, I will be using minimal examples
for each of the templates.

To get started with this example, create a file called taxonomy-
presenters.php and upload it to your theme folder. Add the following code:

<?php get_header(); ?>

<?php // Get the data we need
 $presenter = get_term_by('slug', get_query_var('term'),
get_query_var('taxonomy'));
?>

 <div id="container">
 <div id="content" class="presenter">
 <h1 class="entry-title"><?php echo $presenter-
>name; ?></h1>
 <p><?php echo $presenter->description; ?></p>
 </div>
 </div>

<?php get_footer(); ?>

Smashing eBook #12│WordPress Tutorials │ 77

Previewing a term should now show you a rather empty page with the name
of the term and the description (if you entered one when creating or editing
the term). In my case, on Twenty Ten, accessing the term “Jonathan Wold” (/
presenter/jonathan-wold) looks like this:

A rather basic, yet more useful, view of a custom taxonomy term template.

Before moving on, let’s review the code above to learn what it’s doing and
what you can do with it.

$presenter = get_term_by('slug', get_query_var('term'),
get_query_var('taxonomy'));

This piece of code may seem intimidating at first, but it’s rather simple. First,
we are defining a variable called $presenter. Our goal is to have that
variable store everything that WordPress knows about our term.

To do that, we are using the function get_term_by. That function requires
three things:

Smashing eBook #12│WordPress Tutorials │ 78

http://codex.wordpress.org/Function_Reference/get_term_by
http://codex.wordpress.org/Function_Reference/get_term_by

1. Field – You can access a term by name, ID, or slug. In our case, we are
using the slug, which is “jonathan-wold”.

2. Value – We’ve told WordPress that we want to get our term data by
using the “slug” field. Now, it needs a slug to retrieve data. Since we
want this to be dynamic, we are using another function called
get_query_var. When you access a term in WordPress (e.g. viewing a
term by its permalink), a query is run in order to generate the results for
that term. Using “get_query_var” allows you to intercept that query and
get the data for your own use.

3. Taxonomy – In addition to the term slug, WordPress also needs the
taxonomy name (this is critical in cases where the same name is used
across multiple taxonomies). We use “get_query_var” again to retrieve
that for us.

If we wanted to access the term data for one specific term in a particular
custom taxonomy, we would do it like this:

$presenter = get_term_by('slug', 'jonathan-wold',
'presenters');

In our example, we are adding code into our template telling WordPress to
give us the data for the term a visitor is currently viewing. WordPress stores
that data as an “object”.

To see what data is available to you in an object, add the following within
your code:

<?php
 echo '<pre>';
 print_r($presenter);
 echo '</pre>';
?>

Smashing eBook #12│WordPress Tutorials │ 79

http://codex.wordpress.org/Function_Reference/get_query_var
http://codex.wordpress.org/Function_Reference/get_query_var

Preview the term again and you should see a block of code that looks
something like this:

An easily readable view of the object attributes and values.

That block of code lets you see what WordPress knows about your
particular object and what information you have available to use within your
template.

Note: In part one, I referenced a technique for adding custom fields to
your custom taxonomies and giving you access to more data within
your templates. Just incase you missed the reference, take a look at the
advanced tutorial, How To Add Custom Fields To Custom Taxonomies,
on the Sabramedia blog.

DISPLAYING OBJECT DATA IN TEMPLATES

Now, let’s look at how we took the data from that object and actually
displayed it in the template. Let’s start with the first example:

<?php echo $presenter->name; ?>

Smashing eBook #12│WordPress Tutorials │ 80

http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies
http://sabramedia.com/blog/how-to-add-custom-fields-to-custom-taxonomies

In English, we are telling PHP to “echo”, or display, the “name” value of the
$presenter object. We would know that the object created with
“get_term_by” contains the value for “name” by either looking up the return
values for get_term_by in the Codex or by using “print_r” to see for
ourselves. We’ll explore this in more detail once we look at the “topics”
taxonomy.

To get our description, we do the same thing, changing the “name” value to
“description”:

<?php echo $presenter->description; ?>

DISPLAYING TERM RESULTS IN CUSTOM TAXONOMY TEMPLATES

Now that we have our term name and description displaying, it’s time to
show some actual custom post results.

We are continuing our example with taxonomy-presenters.php. Replace the
existing code with the following:

<?php get_header(); ?>

<?php // Get the data we need
 $presenter = get_term_by('slug', get_query_var('term'),
get_query_var('taxonomy'));

 $resources = new WP_Query(
 array(
 'post_type' => 'resource', // Tell WordPress which
post type we want
 'posts_per_page' => '3', // Show the first 3
 'tax_query' => array(// Return only resources where
presenter is listed
 array(
 'taxonomy' => 'presenters',
 'field' => 'slug',
 'terms' => $presenter->slug,

Smashing eBook #12│WordPress Tutorials │ 81

http://codex.wordpress.org/Function_Reference/get_term_by%23Return_Values
http://codex.wordpress.org/Function_Reference/get_term_by%23Return_Values
http://codex.wordpress.org/Function_Reference/get_term_by%23Return_Values
http://codex.wordpress.org/Function_Reference/get_term_by%23Return_Values

)
)
)
);
?>

 <div id="container">
 <div id="content" class="presenter">
 <h1 class="entry-title"><?php echo $presenter-
>name; ?></h1>
 <p><?php echo $presenter->description; ?></p>

 <div class="resources">
 <h3>Latest Resources</h3>
 <ul id="resource-list">
 <?php while ($resources->have_posts()) :
$resources->the_post(); ?>
 <li id="resource-<?php the_ID(); ?>"
class="resource">
 <a href="<?php the_permalink(); ?>"><?
php the_title(); ?>
 <?php the_excerpt(); ?>

 <?php endwhile; ?>

 </div>

 </div>
 </div>

<?php get_footer(); ?>

Previewing one of your terms should now display the name and description
of the term along with a list of custom posts associated with that term. In our
case, the results look like this:

Smashing eBook #12│WordPress Tutorials │ 82

With a customizable list of related custom posts, the term results template is
looking much more useful.

The update to this code block is the addition of our “$resources” query.
Let’s take a look at that more closely:

$resources = new WP_Query(
 array(
 'post_type' => 'resource', // Tell WordPress which post
type we want
 'posts_per_page' => '3', // Show the first 3
 'tax_query' => array(// Return resources associated with
presenter
 array(
 'taxonomy' => 'presenters',
 'field' => 'slug',
 'terms' => $presenter->slug,
)
)
)
);

Smashing eBook #12│WordPress Tutorials │ 83

For our variable of $resources, we are creating a new instance of the
WordPress class, WP_Query. Then, we’re setting values on several
parameters, post_type, post_per_page, and tax_query.

The first two are straight forward. With “post_type”, you let WordPress know
which types of content you’re wanting to return. We used that in our media
example to retrieve attachments. To display multiple posts types, replace
the “post_type” line with this:

'post_type' => array('resource', 'other_post_type',
'another_post_type'),

For “posts_per_page”, you are letting WordPress know how many posts to
return before triggering pagination. If you want to return all posts, use “-1″
for the value, like this:

'posts_per_page' => '-1', // Show all the posts

Now, “tax_query” is a new parameter added in WordPress 3.1. It is a
powerful parameter that lets you return results associated with multiple
taxonomies and custom fields.

Let’s take a closer look at it:

'tax_query' => array(// Return resources associated with
presenter
 array(
 'taxonomy' => 'presenters',
 'field' => 'slug',
 'terms' => $presenter->slug,
)
)

First, we choose our custom taxonomy. In our case, we are hardcoding in
“presenters”. If we wanted to make it more dynamic and build, for instance,
a general taxonomy template (taxonomy.php) to handle multiple taxonomies
in a similar way, we would use “get_query_var” again, like so:

Smashing eBook #12│WordPress Tutorials │ 84

http://codex.wordpress.org/Function_Reference/WP_Query
http://codex.wordpress.org/Function_Reference/WP_Query
http://codex.wordpress.org/Function_Reference/WP_Query%23Type_.26_Status_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query%23Type_.26_Status_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query%23Pagination_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query%23Pagination_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query%23Taxonomy_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query%23Taxonomy_Parameters
http://codex.wordpress.org/Version_3.1
http://codex.wordpress.org/Version_3.1

'taxonomy' => get_query_var('taxonomy'),

Note: The “tax_query” function works with one taxonomy at a time. To
query multiple taxonomies, simply duplicate the code above (be sure to
add the appropriate comma at the end) and change the parameters
accordingly.

Next, we have the “field” parameter. This lets WordPress know what field
we will be returning our terms by. WordPress accepts “slug” or “id”. I am
using “slug” because I prefer recognizing posts by words over numbers.

Then, we have “terms”. In our case, we are using the $presenter variable to
pass in the “slug” in the same way we added data directly into our custom
post template. If we wanted to make it more dynamic, we could use
“get_query_var” again:

'term' => get_query_var('term'),

If we want to return results for multiple terms, we add an array, like this:

'term' => array('term_1', 'term_2', 'random_other_term'),

To modify our results further, we can use an optional “operator” parameter
that allows us to specify whether our results are “IN”, “NOT IN”, or “OR”. A
simple example, appropriate for use in a single taxonomy, is “NOT IN”.

To modify the query to return results that are “NOT IN” the custom
taxonomy and terms that you’ve listed, add the following within your
tax_query array:

'operator' => 'NOT IN',

Smashing eBook #12│WordPress Tutorials │ 85

Note: To experiment with results queried against multiple custom
taxonomies, take a look at “Multiple Taxonomy Handling” under
Taxonomy Parameters on the Codex reference for WP_Query.

Now that we’ve gone through that, we reference our newly created query
with a loop. Here’s the code again:

<div class="resources">
 <h3>Latest Resources</h3>
 <ul id="resource-list">
 <?php while ($resources->have_posts()) : $resources-
>the_post(); ?>
 <li id="resource-<?php the_ID(); ?>"
class="resource">
 <a href="<?php the_permalink(); ?>"><?php
the_title(); ?>
 <?php the_excerpt(); ?>

 <?php endwhile; ?>

</div>

This is another basic instance of The Loop, customized to return results from
our $resources query and, in this case, the results returned are “the_ID”,
“the_permalink”, “the_title”, and “the_excerpt”.

CHECKING FOR EMPTY RESULTS

In our example above, we have some code (like the) that appears
outside of our loop. If there were no results, the “container” HTML would still
show up in the template. To prevent that, we can preface it with a
conditional statement like this:

Smashing eBook #12│WordPress Tutorials │ 86

http://codex.wordpress.org/Function_Reference/WP_Query#Taxonomy_Parameters
http://codex.wordpress.org/Function_Reference/WP_Query#Taxonomy_Parameters

<?php if ($resources->post_count > 0) { // Check to make
sure there are resources ?>
// Display your results
<?php } ?>

Replace “$resources” with the name of your custom query and return your
results within the conditional statement. If the “post_count” is greater than
zero (“> 0″), then the code will appear in your template – otherwise, the
page remains free of extra HTML.

Hierarchical Custom Taxonomy Templates
Alright, now that we have a non-hierarchical taxonomy under our belt, let’s
move on and tackle hierarchy. We covered the basics in setting up
“presenters”, so let’s pick up there where we left off.

Create a file called taxonomy-topics.php and add the following code:

<?php get_header(); ?>

<?php // Get the data we need
 $topic = get_term_by('slug', get_query_var('term'),
get_query_var('taxonomy'));

 $resources = new WP_Query(
 array(
 'post_type' => 'resource', // Tell WordPress which
post type we want
 'posts_per_page' => '3', // Show the first 3
 'tax_query' => array(// Return only resources where
presenter is listed
 array(
 'taxonomy' => 'topics',
 'field' => 'slug',
 'terms' => $topic->slug,
)
)
)

Smashing eBook #12│WordPress Tutorials │ 87

);
?>

 <div id="container">
 <div id="content" class="presenter">
 <h1 class="entry-title"><?php echo $topic->name; ?></
h1>
 <p><?php echo $topic->description; ?></p>

 <?php if ($resources->post_count > 0) { // Check to
make sure there are resources ?>
 <div class="resources">
 <h3>Latest Resources</h3>
 <ul id="resource-list">
 <?php while ($resources->have_posts()) :
$resources->the_post(); ?>
 <li id="resource-<?php the_ID(); ?>"
class="resource">
 <a href="<?php the_permalink(); ?
>"><?php the_title(); ?>
 <?php the_excerpt(); ?></
span>

 <?php endwhile; ?>

 </div>
 <?php } ?>

 </div>
 </div>

<?php get_footer(); ?>

Smashing eBook #12│WordPress Tutorials │ 88

Previewing a “topic” should now give you a familiar plain template that looks
something like this:

A basic, yet useful view of another custom taxonomy term.

CREATING PARENT AND CHILDREN LINKS

Now, the thing that is different with this taxonomy is that it can have both
“parents” and “children”. What we want to do is check for a parent topic
and, if it exists, display a link to it. We also want to check for sub-topics and
if they exist, display links to them.

Note: For these examples to work, be sure that you’re working with a
post example that has multiple levels of a hierarchical custom taxonomy
associated with it. In my example, I have created topics 3 levels deep
and associated all of them with the post.

Smashing eBook #12│WordPress Tutorials │ 89

So let’s get started. First, within the PHP section at the top of our template,
add the following code:

if ($topic->parent > 0) { // Check to make sure the topic
has a parent
 $topic_parent = get_term($topic->parent, 'topics'); // Get
the object for the topic's parent
}

$topic_children = get_terms('topics', 'child_of='.$topic-
>term_id);
$last_topic = end(array_keys($topic_children)); // Mark
the last topic

Alright, what do we have going on here? First, we’re checking to make sure
the topic has a parent. If a topic does not have a parent, WordPress gives
the “parent” attribute a value of zero (“0″). So, the first thing we do is a
conditional to check and make sure that the parent has a value greater than
zero. If it does, we define the variable $topic_parent and use the get_term
function to retrieve the parent topic based on its ID.

Next, we define another variable called $topic_children. This time, we use
the get_terms function, which has a special attribute called “child_of”. We
pass in the value of the current topic and tell WordPress, in English, to “take
the current topic and bring me back a list of all its sub-topics or children”.

Then, we define a variable called $last_topic. The data that $topic_children
gives us is in the form of an array. Our $last_topic variable counts to the
“end” of the array and keeps track of it. We’re going to use that later to put a
comma after each of our sub-topics and then do nothing for the last sub-
topic.

Smashing eBook #12│WordPress Tutorials │ 90

http://codex.wordpress.org/Function_Reference/get_term
http://codex.wordpress.org/Function_Reference/get_term
http://codex.wordpress.org/Function_Reference/get_term
http://codex.wordpress.org/Function_Reference/get_term
http://codex.wordpress.org/Function_Reference/get_terms
http://codex.wordpress.org/Function_Reference/get_terms

Now, to show the results, add the following code within your template:

<?php if ($topic->parent > 0) { ?>
Parent: <a href="<?php echo
get_term_link($topic_parent->slug, 'topics'); ?>"><?php echo
$topic_parent->name; ?>
<?php } ?>

<?php if ($topic_children) { ?>
 Subtopics:
 <?php foreach ($topic_children as $key =>
$topic_single) : ?>
 <a href="<?php echo get_term_link($topic_single-
>slug, 'topics'); ?>"><?php echo $topic_single->name; ?></
a><?php if ($key !== $last_topic) echo ', '; ?>
<?php endforeach; ?>
<?php } ?>

Each block of code first checks to make sure that a parent topic or sub-
topic(s) exists, respectively. Then, in the case of the “parent”, we use the
get_term_link function to retrieve the link by the “slug” of the $topic_parent.

For our sub-topics, we create a “foreach” loop to output a list of all sub-
topics. At the end, we do a conditional check on the $last_topic in our array
using the variable we created earlier. If it is not the last topic, we echo a
comma after the close – otherwise, we do nothing.

And there you have it! The result using the Twenty Ten theme will look
something like this:

Smashing eBook #12│WordPress Tutorials │ 91

http://codex.wordpress.org/Function_Reference/get_term_link
http://codex.wordpress.org/Function_Reference/get_term_link

A view of the “topics” taxonomy, with the parent topic and sub-topics listed.

RELATING TAXONOMIES BY POSTS

Now, this is where we get a bit fancy. Let’s say we’re working on our
template for the “topics” taxonomy and we wanted to show a list of
“presenters” who covered that particular topic. How would we do that? In
the code that follows, we’re going to use the custom posts themselves as
our reference point and bring back the related custom taxonomies.

The rationale is simple. If we had 10 posts associated with a particular term
in a given custom taxonomy, those 10 posts will likely have other terms from
other custom taxonomies associated with them as well. So, we use the
posts themselves to retrieve and compile the term data that would
otherwise not be related to our particular term. Here are some examples
where this might be especially useful:

• Events - An “event” taxonomy where we want to show a list of
“presenters” at that same event.

• Movies - A “genre” taxonomy where we want to show a list of
“directors” who make that same genre of film.

Smashing eBook #12│WordPress Tutorials │ 92

• Recipes - A “category” taxonomy where we want to show related
“ingredients”.

Alright, let’s dive into the code:

// Retrieve all the IDs for resources associated with the
current term
$post_ids = array();
foreach ($resources->posts as $post) {
 array_push($post_ids, $post->ID);
}

// Get presenter data based on the posts associated with the
current term
$presenters_by_posts = wp_get_object_terms($post_ids,
"presenters");

$topic_presenters = array();
foreach ($presenters_by_posts as $presenter){
 $topic_presenters[$presenter->term_id] = $presenter;
}
$last_presenter = end(array_keys($topic_presenters));

First, we define an empty array called $post_ids. Then, we create a loop
through each of the “resources” associated with our current term using the
$resource query we created earlier. We take that loop and “push” each of
the post IDs for our resources back into the previously empty $post_ids
array.

Next, we define a new variable, $presenters_by_posts. We use the
wp_get_object_terms function, which accepts either a single ID or an array
of IDs (which we just created) to return a list of terms. In our case, we’re
using this function to check all the custom posts associated with this term
and bring back a list of all the “presenters”.

Next, we define another empty array called $topic_presenters. We now loop
through our $presenters_by_posts and then redefine our $presenter

Smashing eBook #12│WordPress Tutorials │ 93

http://codex.wordpress.org/Function_Reference/wp_get_object_terms
http://codex.wordpress.org/Function_Reference/wp_get_object_terms

variable to hold the term_id of each $presenter that we returned using our
$presenters_by_posts function.

Now, let’s make use of that in the template. Add the following the code:

<?php if ($topic_presenters) { ?>
 Presenters:
 <?php foreach ($topic_presenters as $key =>
$presenter) : ?>
 <a href="<?php echo get_term_link($presenter-
>slug, 'presenters'); ?>"><?php echo $presenter->name; ?></
a><?php if ($key !== $last_presenter) echo ', '; ?>
 <?php endforeach; ?>
<?php } ?>

Now, we simply loop through each of our $topic_presenters using our
redefined $presenter. We then access the attribute values of our $presenter
object to echo the “slug” for the term link and the term “name”. Finally, we
do a check for the $last_presenter and if it is not the last one, we echo a
comma.

Here’s how that looks in my example:

The updated view of “Topics”, with a list of presenters related by custom posts.

Smashing eBook #12│WordPress Tutorials │ 94

Conclusion
And that’s a wrap! With part one and part two under your belt you have
taken some solid steps above and beyond the basics of WordPress theme
development. My goal has been to give you some solid examples that you
can follow and to explain what’s been done along the way so you can apply
what you’ve learned to your own projects. You’ve learned a lot about
custom post types and custom taxonomies and I am looking forward to
seeing what you build.

Smashing eBook #12│WordPress Tutorials │ 95

Ge"ing Started With bbPress

Thord Daniel Hedengren

Forums have been around forever, so it should come as no surprise that
several plugins for the popular publishing platform WordPress provide this
feature, as well as support for integrating other forum software. One project,
however, has a special place in the WordPress community, and that is
bbPress. This is the software created by WordPress founder, Matt
Mullenweg, as a lightweight system for the WordPress.org support forums.
In true open-source fashion, the bbPress project was born (at bbpress.org,
of course) as a lightweight standalone alternative for forums.

The problem is that the project never really kept up the pace; and while the
WordPress community wanted to use it, and bbPress saw some promising

Smashing eBook #12│WordPress Tutorials │ 96

http://bbpress.org/
http://bbpress.org/

spurts of development, it never really caught up to the alternatives. Most of
us who needed a forum went either with a plugin alternative that integrated
perfectly or with forum software such as Vanilla.

The Facebook-inspired community plugin BuddyPress changed all that.
BuddyPress, which adds groups and other membership functionality to a
blog, started to ship with bbPress integrated in it. Perhaps unknowingly,
some WordPress bloggers who had community features powered by
BuddyPress were actually running a version of bbPress, which is enabled in
the BuddyPress interface. It worked — and continues to work — great
actually; because although bbPress, as standalone forum software, is way
behind the competition in terms of features, sometimes all you need is a
lightweight alternative, which was the idea behind bbPress all along.

bbPress 2.0 changed it all again, because bbPress has now been officially
reborn as a plugin for WordPress, something that had been in the works for
quite some time. This is where we stand today, with a fresh release of the
first version of the bbPress plugin. In the coming weeks (or right now,
depending on when you’re reading this), the plugin will get proper
documentation and more support for cool functionality. That shouldn’t stop
you from giving it a go right away, because getting started and taking
advantage of its core functionality is easy enough.

Before we move on, we need to clear up some nomenclature:

• bbPress is a plugin for WordPress, and is sometimes referred to as
bbPress 2.0 for clarity.

• bbPress 1.0 is a standalone forum that integrates with WordPress (and
the BuddyPress plugin) but does not reside in WordPress’ core.

• BuddyPress is a separate plugin for WordPress that integrates with the
bbPress plugin.

Smashing eBook #12│WordPress Tutorials │ 97

http://vanillaforums.org/
http://vanillaforums.org/
http://buddypress.org/
http://buddypress.org/

• BuddyPress still ships with bbPress, but you can connect to your
bbPress plugin forums if you want to.

Yes, it’s all a bit messy.

Ge"ing bbPress Up And Running
Installing bbPress is easy, because it’s available in WordPress’ plugin
directory. Either install it from within WordPress, using the “Add new plugin”
feature, or via FTP if you prefer to (or must) upload plugins. Then, activate
the plugin, and you’re all set!

Well, not quite. You’ll want to look at some settings before starting to use
the forums.

You’ll notice a new “Forums” menu under “Settings” in the admin area,
along with the brand new sections “Forums,” “Topics” and “Replies,” all
sporting bee-inspired icons.

Let’s look at the “Forums” settings pane first, shown above. Here you have
an assortment of settings for your forums, such as whether to allow
anonymous posts, how long posters should be able to edit their posts, and
how many topics to show per page.

The “Archive” and “Single Slugs” settings are important. These define the
URLs of your forums, the posts, and the tags for posts. Choose something
that fits your set-up; if you’re running an English-language website, then the
default settings will probably do, but you can fine tune to your needs.

Smashing eBook #12│WordPress Tutorials │ 98

http://wordpress.org/extend/plugins/bbpress/
http://wordpress.org/extend/plugins/bbpress/
http://wordpress.org/extend/plugins/bbpress/
http://wordpress.org/extend/plugins/bbpress/

bbPress settings.

Remember to go to Settings → Permalinks after making any change to the
slugs, and rebuild the permalink structure by clicking the “Save Changes”
button on that page. If you ever have problems viewing the forums, give this
a shot because it might be an issue with the permalinks, and rebuilding
them might help. Also, make sure to press the “Save” button in Settings →
Forums.

Where are your forums, then? Well, you’ll already know that from the
Settings → Forums page, because they are located at the base slug

Smashing eBook #12│WordPress Tutorials │ 99

assigned for the forums. By default, it would be forums, so you’d find them
at yourdomain.com/forums/. Do yourself a favor and use pretty
permalinks, because although bbPress will work without them, the URLs will
look so much better if they’re pretty. That Google will thank you is just a
bonus (note: an actual thank-you from Google is not guaranteed).

The forums page, without any forums unfortunately.

There we go: all set up and ready to go. Too bad there aren’t any forums,
nor posts… yet!

Smashing eBook #12│WordPress Tutorials │ 100

Managing bbPress Forums
Getting bbPress set up and ready to go is a breeze, but if you actually want
some action in your brand new forums, then you’ll need to create a forum.
This is easily done under “Forums” in the admin area. Just click “New
Forum,” and you’ll get a familiar-looking screen to create a forum.

Create a forum.

This is pretty self-explanatory. The one thing you’ll need to be careful with is
the box in the top-right corner. These are the settings that enable you to
control whether a forum is open or closed, whether it is a forum or a
category, and who should see it. When you have created multiple forums,
the “Parent” and “Order” options will show up, allowing you to nest forums
(much like “Pages”) and sort them (also like Pages).

To make a long story short, with a few forums created, users will soon be
able to post in your forums. Depending on your settings, they may need to

Smashing eBook #12│WordPress Tutorials │ 101

sign up, but that’s a different matter and depends on what kind of website
you’re running.

A forums page.

Managing “topics,” which are new posts, and “replies,” which are replies to
topics, is easy enough. These show up under their respective sections in the
WordPress admin area, and they behave much like posts and comments.
That’s no surprise because bbPress has the same model as standard posts
and Pages, using custom post types. This will also make it easy to style the
bbPress forum should you want to, something we’ll look at more closely
later.

Finally, one thing to know when running bbPress on a non-English website:
localization projects are on GlotPress, and you can get a translation by using
the options at the bottom of the entry for your selected language. You’ll
need to upload these to the wp-content/plugins/bbpress/bbp-
languages/ folder, and the file should be called bbpress-sv_SE.mo, where

Smashing eBook #12│WordPress Tutorials │ 102

http://translate.wordpress.org/projects/bbpress/plugin
http://translate.wordpress.org/projects/bbpress/plugin

sv_SE should be swapped for your language of choice. Hopefully, we’ll be
able to store these files in the wp-content/languages/ folder later, but
this doesn’t work for me right now.

EXTENDING BBPRESS

Although bbPress is now a WordPress plugin and not a standalone system,
you’ll find plugins that extend its functionality. Quite a few actually: for
displaying the latest posts in widgets, adding signatures and whatnot.

Your starting point for bbPress-related plugins is the plugins section of the
bbPress website and, of course, the WordPress plugin directory (begin with
a search).

One thing, though: make sure any plugin you choose is made for bbPress
2.0 (i.e. the plugin version). Older plugins made for the 1.x branch will not
work.

BuddyPress And bbPress
BuddyPress, the plugin that enables you to create your own Facebook-like
community on a WordPress website, work just great with bbPress. That
should come as no surprise because the plugin still ships with the forum
component (bbPress) built in. But this forum component is for enabling
forums for your BuddyPress groups. Groups are exactly what they sound
like: members can join them, even create their own (depending on your
settings), and discuss various topics in them. With forums enabled for
groups, every group will get a forum. This is still true with BuddyPress 1.5,
despite there being a standalone bbPress plugin now. If you want forums for
your BuddyPress-powered groups, then either choose an existing bbPress

Smashing eBook #12│WordPress Tutorials │ 103

http://bbpress.org/plugins/
http://bbpress.org/plugins/
http://bbpress.org/plugins/
http://bbpress.org/plugins/
http://wordpress.org/extend/plugins/search.php?q=bbpress
http://wordpress.org/extend/plugins/search.php?q=bbpress
http://wordpress.org/extend/plugins/search.php?q=bbpress
http://wordpress.org/extend/plugins/search.php?q=bbpress

installation or install one in the BuddyPress settings. And yes, this is a bit
confusing.

The settings page for BuddyPress forums.

With bbPress 2.0 and the shift from standalone forum software to
WordPress plugin, you can rest assured that BuddyPress and bbPress still
work well enough together. The option for installing forums site-wide is on
the settings page for the BuddyPress forum, and it actually installs the
bbPress plugin, rather than rely on the built-in forum component in the
BuddyPress plugin. BuddyPress and the bbPress plugin integrate nicely out
of the box, but not for group forums. Instead, your posts in the forums will
show up in the BuddyPress activity stream; surely we’ll see some cool
plugins in the future that leverage both BuddyPress and the bbPress plugin,
tying the two even closer together.

All in all, there is no reason not to combine bbPress with BuddyPress if you
need more community features than just a forum on your website.

Smashing eBook #12│WordPress Tutorials │ 104

Making bbPress Look Good
While your forums will work well out of the box, as you no doubt have
gathered from the screenshots earlier in this article, you might want to make
bbPress better suit the look of your website. You’ve already seen the
default styles of bbPress, which you can tweak easily enough: just add CSS
to your theme’s style sheet!

Doing this is easy: just inspect the code of the forums with your favorite Web
inspector (such as Firebug or the built-in inspector in Chrome or Safari), and
find the classes that you’ll need to style the forums.

The ul.bbp-forums class gives you control.

If you want more control, perhaps to break from the default layout of the
forums, you can add additional template files to your WordPress theme. The
bbPress plugin is already compatible with Twenty Ten, the previous default
theme. In the bbpress folder, look at the files in bbp-themes/bbp-

Smashing eBook #12│WordPress Tutorials │ 105

http://getfirebug.com/
http://getfirebug.com/
http://wordpress.org/extend/themes/twentyten
http://wordpress.org/extend/themes/twentyten

twentyten/ and you’ll get an idea what you can do. Simply changing the
theme to Twenty Ten (instead of Twenty Eleven, which was shown earlier in
this article) will give us something different and more attuned to our theme.

We get a different look when using Twenty Ten.

How you style the forums will depend on how much you want to deviate
from the default look and feel. If everything is where it should be, then you’ll
be able to make the forums looks good and fit your theme just by adding
styles to your theme’s style sheet. But if you want to move things around a
lot, then you’ll probably have to create your own template files. Consult the
files in the bbpress/bbp-themes/bbp-twentyten/ folder to get an
idea of what can be done, while we wait for bbPress to publish proper

Smashing eBook #12│WordPress Tutorials │ 106

documentation. Because forums are really just a custom post type, you’ll
likely be able to find your way around if you’ve worked with them before.

!ree Websites !at Use bbPress
Want to see some bbPress forums in action, other than bbPress.org itself or
Twenty Ten and Twenty Eleven themes with the plugin activated?

WORDPRESS.ORG

WordPress Forums

While using bbPress on WordPress.org might not exactly qualify as eating
one’s own dog food, this is where it started after all.

Smashing eBook #12│WordPress Tutorials │ 107

http://wordpress.org/support/
http://wordpress.org/support/

DROPBOX

Dropbox Forums

The syncing service Dropbox has been using bbPress forums for quite some
time, with a pretty simple, standard look. This is just the standalone version,
and it shows that bbPress is ready for prime time.

Smashing eBook #12│WordPress Tutorials │ 108

http://forums.dropbox.com/
http://forums.dropbox.com/

WPCANDY

Discussions on WPCandy

The forums section of WPCandy is a great example of how bbPress can be
easily integrated in an existing WordPress theme.

What’s Next?
Personally, I’m thrilled to see bbPress become a WordPress plugin. We’ve
seen plugins that add forum features to WordPress in the past, but I haven’t
been comfortable running any of them, to be honest. Whenever I’ve needed
forums, I’ve used software such as the excellent Vanilla. Some people have
suggested the BuddyPress plugin, but that’s a bit much if all you need is a
simple forum for discussions.

With bbPress 2.0, this isn’t an issue anymore, and although documentation
isn’t available yet, getting started is easy enough. You’ll probably want to

Smashing eBook #12│WordPress Tutorials │ 109

http://wpcandy.com/discussions
http://wpcandy.com/discussions

add features to your forums, and that’s easy with additional plugins. And
because bbPress is really just a custom post type for your WordPress
website, using actual registered users, you can use existing plugins to
achieve things such as moderator privileges and whatnot. We can anticipate
a boom of bbPress-compatible plugins in the near future that will make our
forums even better and more interesting.

For now, let’s play with what we have, which is usually more than enough.

Smashing eBook #12│WordPress Tutorials │ 110

WordPress Multisite: Practical Functions
And Methods

Kevin Leary

Multisite is a powerful new feature that arrived with the release of
WordPress 3.0. It allows website managers to host multiple independent
websites with a single installation of WordPress. Although each “website” in
a network is independent, there are many ways to share settings, code and
content throughout the entire network.

Smashing eBook #12│WordPress Tutorials │ 111

Since the beginning of the year, I’ve been developing themes and plugins
for a WordPress Multisite-powered content network. During that time I’ve
learned many powerful tips and tricks unique to Multisite. This guide will
introduce you to a few Multisite-specific functions, along with real-world
programming examples that you can begin using today. Hopefully, it will
open your eyes to a few of the new possibilities available in Multisite.

Why Use Multisite?
Multisite is a great option for freelancers, businesses and organizations that
manage multiple WordPress websites. Whether you’re a freelancer who
wants to provide hosting and maintenance to clients, a college organization
looking to centralize the management of your websites, or a large news
publisher trying to isolate silos for different departments, Multisite is the
answer.

Managing multiple websites with a single installation of WordPress enables
you to easily upgrade the core, plugins and themes for every website in a
network. You can share functionality across multiple websites with network
plugins, as well as standardize design elements across multiple websites
using a parent theme.

OVERVIEW OF BENEFITS

• Users are able to easily access and manage multiple websites with a
single user account and profile.

• Users can access a particular website or every website using the same
account.

• Information from one website can be completely isolated from others.

Smashing eBook #12│WordPress Tutorials │ 112

• Information from one website can be easily shared with others.

• Theme functionality can be shared across multiple websites using a
parent-child theme relationship or a functionality plugin.

• Updates and upgrades can be rolled out across multiple websites in
less time, reducing overhead and maintenance costs.

• Customizations to WordPress can be efficiently distributed in a
centralized, cascading method using network-wide plugins.

I won’t explain how to install and configure Multisite. If you need help, plenty
of great articles are available in the WordPress Codex.

Working With Multisite Functions
Multisite-enabled WordPress installations contain additional functions and
features that theme developers can use to improve the experience of a
website. If you find yourself developing themes and plugins for WordPress
Multisite, consider the following tips to customize and improve the
connectivity of the network.

DISPLAYING INFORMATION ABOUT A NETWORK

You might find yourself in a situation where you would like to display the
number of websites or users in your network. Providing a link to the
network’s primary website would also be nice, so that visitors can learn
more about your organization.

Multisite stores global options in the wp_sitemeta database table, such as
the network’s name (site_name), the administrator’s email address

Smashing eBook #12│WordPress Tutorials │ 113

http://www.wpbeginner.com/wp-themes/how-to-create-a-wordpress-child-theme-video/
http://www.wpbeginner.com/wp-themes/how-to-create-a-wordpress-child-theme-video/
http://wpcandy.com/teaches/how-to-create-a-functionality-plugin
http://wpcandy.com/teaches/how-to-create-a-functionality-plugin
http://codex.wordpress.org/Create_A_Network
http://codex.wordpress.org/Create_A_Network
http://codex.wordpress.org/
http://codex.wordpress.org/

(admin_email) and the primary website’s URL (siteurl). To access
these options, you can use the get_site_option() function.

In this example, I’ve used the get_site_option() function along with
get_blog_count() and get_user_count() to display a sentence with
details about a network.

<?php if(is_multisite()): ?>

 The <a href="<?php echo
esc_url(get_site_option('siteurl')); ?>"><?php echo
esc_html(get_site_option('site_name')); ?> network
currently powers <?php echo get_blog_count(); ?></
strong> websites and <?php echo get_user_count(); ?></
strong> users.

<?php endif; ?>

This small snippet of code will display the following HTML:

The Smashing
Magazine network currently powers 52
websites and 262 users.

Many useful Multisite functions can be found in the /wp-includes/ms-
functions.php file. I highly suggest browsing the Trac project yourself.
It’s a great way to find new functions and to become familiar with WordPress
coding standards.

BUILD A NETWORK NAVIGATION MENU

Many networks have consistent dynamic navigation that appears on all
websites, making it easy for visitors to browse the network. Using the
$wpdb database class, along with the get_site_url(), home_url(),
get_current_blog_id(), switch_to_blog() and
restore_current_blog() functions, we can create a fully dynamic

Smashing eBook #12│WordPress Tutorials │ 114

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://core.trac.wordpress.org/browser/tags/3.2.1/wp-includes/ms-functions.php
http://core.trac.wordpress.org/browser/tags/3.2.1/wp-includes/ms-functions.php
http://core.trac.wordpress.org/browser/tags/3.2.1/wp-includes/ms-functions.php
http://core.trac.wordpress.org/browser/tags/3.2.1/wp-includes/ms-functions.php
http://core.trac.wordpress.org/browser/tags/3.2.1/
http://core.trac.wordpress.org/browser/tags/3.2.1/
http://codex.wordpress.org/WordPress_Coding_Standards
http://codex.wordpress.org/WordPress_Coding_Standards
http://codex.wordpress.org/WordPress_Coding_Standards
http://codex.wordpress.org/WordPress_Coding_Standards
http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb

network menu, including a class (.current-site-item) to highlight the
current website.

The SQL query we’ve created in this example has the potential to become
very large, possibly causing performance issues. For this reason, we’ll use
the Transients API, which enables us to temporarily store a cached version
of the results as network website “transients” in the sitemeta table using
the set_site_transient() and get_site_transient() functions.

Transients provide a simple and standardized way to store cached data in
the database for a set period of time, after which the data expires and is
deleted. It’s very similar to storing information with the Options API, except
that it has the added value of an expiration time. Transients are also sped up
by caching plugins, whereas normal options aren’t. Due to the nature of the
expiration process, never assume that a transient is in the database when
writing code.

The SQL query will run every two hours, and the actual data will be returned
from the transient, making things much more efficient. I’ve included two
parameters, $size and $expires, allowing you to control the number of
posts returned and the expiration time for the transient.

One of the most powerful elements of this example is the use of
switch_to_blog() and restore_current_blog(). These two
Multisite functions enable us to temporarily switch to another website (by
ID), gather information or content, and then switch back to the original
website.

Add the following to your theme’s functions.php file:

/**
 * Build a list of all websites in a network
 */

Smashing eBook #12│WordPress Tutorials │ 115

http://codex.wordpress.org/Transients_API
http://codex.wordpress.org/Transients_API
http://codex.wordpress.org/Options_API
http://codex.wordpress.org/Options_API

function wp_list_sites($expires = 7200) {
 if(!is_multisite()) return false;

 // Because the get_blog_list() function is currently
flagged as deprecated
 // due to the potential for high consumption of resources,
we'll use
 // $wpdb to roll out our own SQL query instead. Because the
query can be
 // memory-intensive, we'll store the results using the
Transients API
 if (false === ($site_list =
get_transient('multisite_site_list'))) {
 global $wpdb;
 $site_list = $wpdb->get_results($wpdb->prepare('SELECT
* FROM wp_blogs ORDER BY blog_id'));
 // Set the Transient cache to expire every two hours
 set_site_transient('multisite_site_list', $site_list,
$expires);
 }

 $current_site_url = get_site_url(get_current_blog_id());

 $html = '' . "\n";

 foreach ($site_list as $site) {
 switch_to_blog($site->blog_id);
 $class = (home_url() == $current_site_url) ? '
class="current-site-item"' : '';
 $html .= "\t" . 'blog_id . '"' . $class . '>' . get_bloginfo('name') . '</
li>' . "\n";
 restore_current_blog();
 }

 $html .= '<!--// end #network-menu -->' . "\n\n";

 return $html;
}

(Please note: The get_blog_list() function is currently deprecated due
to the potential for a high consumption of resources if a network contains

Smashing eBook #12│WordPress Tutorials │ 116

more than 1000 websites. Currently, there is no replacement function, which
is why I have used a custom $wpdb query in its place. In future, WordPress
developers will probably release a better alternative. I suggest checking for
a replacement before implementing this example on an actual network.)

This function first verifies that Multisite is enabled and, if it’s not, returns
false. First, we gather a list of IDs of all websites in the network, sorting
them in ascending order using our custom $wpdb query. Next, we iterate
through each website in the list, using switch_to_blog() to check
whether it is the current website, and adding the .current-site-item
class if it is. Then, we use the name and link for that website to create a list
item for our menu, returning to the original website using
restore_current_blog(). When the loop is complete, we return the
complete unordered list to be outputted in our theme. It’s that simple.

To use this in your theme, call the wp_list_sites() function where you
want the network menu to be displayed. Because the function first checks
for a Multisite-enabled installation, you should verify that the returned value
is not false before displaying the corresponding HTML.

<?php
// Multisite Network Menu
$network_menu = wp_list_sites();
if($network_menu):
?>
<div>
 <?php echo $network_menu; ?>
</div><!--// end #network-menu -->
<?php endif; ?>

LIST RECENT POSTS ACROSS AN ENTIRE NETWORK

If the websites in your network share similar topics, you may want to create
a list of the most recent posts across all websites. Unfortunately, WordPress

Smashing eBook #12│WordPress Tutorials │ 117

http://codex.wordpress.org/WPMU_Functions/get_blog_list
http://codex.wordpress.org/WPMU_Functions/get_blog_list
http://codex.wordpress.org/WPMU_Functions/get_blog_list
http://codex.wordpress.org/WPMU_Functions/get_blog_list

does not have a built-in function to do this, but with a little help from the
$wpdb database class, you can create a custom database query of the
latest posts across your network.

This SQL query also has the potential to become very large. For this reason,
we’ll use the Transients API again in a method very similar to what is used in
the wp_list_sites() function.

Start by adding the wp_recent_across_network() function to your
theme’s functions.php file.

/**
 * List recent posts across a Multisite network
 *
 * @uses get_blog_list(), get_blog_permalink()
 *
 * @param int $size The number of results to retrieve
 * @param int $expires Seconds until the transient cache
expires
 * @return object Contains the blog_id, post_id, post_date and
post_title
 */
function wp_recent_across_network($size = 10, $expires =
7200) {
 if(!is_multisite()) return false;

 // Cache the results with the WordPress Transients API
 // Get any existing copy of our transient data
 if (($recent_across_network =
get_site_transient('recent_across_network')) === false) {

 // No transient found, regenerate the data and save a
new transient
 // Prepare the SQL query with $wpdb
 global $wpdb;

 $base_prefix = $wpdb->get_blog_prefix(0);
 $base_prefix = str_replace('1_', '' , $base_prefix);

Smashing eBook #12│WordPress Tutorials │ 118

http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Transients_API
http://codex.wordpress.org/Transients_API

 // Because the get_blog_list() function is currently
flagged as deprecated
 // due to the potential for high consumption of
resources, we'll use
 // $wpdb to roll out our own SQL query instead. Because
the query can be
 // memory-intensive, we'll store the results using the
Transients API
 if (false === ($site_list =
get_site_transient('multisite_site_list'))) {
 global $wpdb;
 $site_list = $wpdb->get_results($wpdb-
>prepare('SELECT * FROM wp_blogs ORDER BY blog_id'));
 set_site_transient('multisite_site_list',
$site_list, $expires);
 }

 $limit = absint($size);

 // Merge the wp_posts results from all Multisite
websites into a single result with MySQL "UNION"
 foreach ($site_list as $site) {
 if($site == $site_list[0]) {
 $posts_table = $base_prefix . "posts";
 } else {
 $posts_table = $base_prefix . $site->blog_id .
"_posts";
 }

 $posts_table = esc_sql($posts_table);
 $blogs_table = esc_sql($base_prefix . 'blogs');

 $query .= "(SELECT $posts_table.ID,
$posts_table.post_title, $posts_table.post_date,
$blogs_table.blog_id FROM $posts_table, $blogs_table\n";
 $query .= "\tWHERE $posts_table.post_type =
'post'\n";
 $query .= "\tAND $posts_table.post_status =
'publish'\n";
 $query .= "\tAND $blogs_table.blog_id = {$site-
>blog_id})\n";

 if($site !== end($site_list))

Smashing eBook #12│WordPress Tutorials │ 119

 $query .= "UNION\n";
 else
 $query .= "ORDER BY post_date DESC LIMIT 0,
$limit";
 }

 // Sanitize and run the query
 $query = $wpdb->prepare($query);
 $recent_across_network = $wpdb->get_results($query);

 // Set the Transients cache to expire every two hours
 set_site_transient('recent_across_network',
$recent_across_network, 60*60*2);
 }

 // Format the HTML output
 $html = '';
 foreach ($recent_across_network as $post) {
 $html .= '<a>blog_id, $post->ID) . '">' . $post-
>post_title . '';
 }
 $html .= '';

 return $html;
}

Using this function in your theme is simple. Be certain to check the return
value before outputting HTML to avoid conflicts with non-Multisite
installations.

<?php
// Display recent posts across the entire network
$recent_network_posts = wp_recent_across_network();
if($recent_network_posts):
?>
<div class="recent-accross-network">
 <?php echo $recent_network_posts; ?>
</div>
<?php endif; ?>

Smashing eBook #12│WordPress Tutorials │ 120

RETRIEVE A SINGLE POST FROM ANOTHER WEBSITE IN THE
NETWORK

In certain situations, you may find it useful to refer to a single page, post or
post type from another website in your network. The get_blog_post()
function makes this process simple.

For example, you may want to display the_content() from an “About”
page on the primary website in your network.

<?php
// Display "About" page content from the network's primary
website
$about_page = get_blog_post(1, 317);
if($about_page):
?>
<div class="network-about entry">
 <?php echo $about_page->post_content; ?>
</div>
<?php endif; ?>

Did you notice that the entire $post object is returned? In this example,
we’ve used only the_content(), but far more information is available for
other circumstances.

SET UP GLOBAL VARIABLES ACROSS A NETWORK

Starting any WordPress project in a solid local development environment is
always important. You might find it handy to have a global variable that
determines whether a website is “live” or “staging.” In Multisite, you can
achieve this using a network-activated plugin that contains the following
handy function, assuming that your local host contains localhost in the
URL:

/**
 * Define network globals

Smashing eBook #12│WordPress Tutorials │ 121

http://wp.smashingmagazine.com/2011/09/28/developing-wordpress-locally-with-mamp/
http://wp.smashingmagazine.com/2011/09/28/developing-wordpress-locally-with-mamp/

 */
function ms_define_globals() {
 global $blog_id;
 $GLOBALS['staging'] = (strstr($_SERVER['SERVER_NAME'],
'localhost')) ? true : false;
}
add_action('init', 'ms_define_globals', 1);

When would you use this $staging variable? I use it to display
development-related messages, notifications and information to improve my
workflow.

DISPLAY THE PAGE REQUEST INFORMATION IN A LOCAL
ENVIRONMENT

I use the $staging global variable to display the number of queries and
page-request speed for every page across a network in my local
environment.

/**
 * Display page request info
 *
 * @requires $staging
 */
function wp_page_request_info() {
 global $staging;
 if ($staging): ?>
 <?php echo get_num_queries(); ?> queries in <?php
timer_stop(1); ?> seconds.
 <?php endif;
}
add_action('wp_footer', 'wp_page_request_info', 1000);

This is only one of many ways you can use the ms_define_globals()
function. I’ve used it to define, find and replace URLs in the content delivery
network, to detect mobile devices and user agents, and to filter local
attachment URLs.

Smashing eBook #12│WordPress Tutorials │ 122

Conclusion
There is tremendous value in the simplicity of managing multiple websites in
a single installation of WordPress. Leveraging WordPress Multisite is quickly
becoming a requisite skill among WordPress developers. These techniques
should provide a solid foundation for you to build on, so that you can be the
next WordPress Multisite theme rock star!

OTHER RESOURCES

• Mastering WordPress Multisite series, WPCandy

• “Create a [Multisite] Network,” WordPress Codex

• “WordPress MultiSite Subdomains on MAMP,” Perishable Press

• “Migrating Multiple Blogs Into WordPress 3.0 Multisite,” WordPress
Codex

• OpenView Venture Partners, a live example of a WordPress Multisite
network

• “Transients, Caching and the Complexities of Multisite,” The Otto and
Nacin Show, WordCamp San Francisco 2011

Smashing eBook #12│WordPress Tutorials │ 123

http://wpcandy.com/series-on/mastering-wordpress-multisite
http://wpcandy.com/series-on/mastering-wordpress-multisite
http://codex.wordpress.org/Create_A_Network
http://codex.wordpress.org/Create_A_Network
http://perishablepress.com/wordpress-multisite-subdomains-mamp/
http://perishablepress.com/wordpress-multisite-subdomains-mamp/
http://codex.wordpress.org/Migrating_Multiple_Blogs_into_WordPress_3.0_Multisite
http://codex.wordpress.org/Migrating_Multiple_Blogs_into_WordPress_3.0_Multisite
http://openviewpartners.com/
http://openviewpartners.com/
http://www.slideshare.net/andrewnacin/wordpress-transients-caching-and-the-complexities-of-multisite
http://www.slideshare.net/andrewnacin/wordpress-transients-caching-and-the-complexities-of-multisite

How To Improve Your WordPress
Plugin’s Readme.txt

Siobhan McKeown

If you’re a plugin developer and you just love to write code, then writing a
readme.txt file for a plugin in WordPress’ repository might be your idea of
hell. When you’ve written all of that lovely code, why must you spend time
writing about how to use it?

Smashing eBook #12│WordPress Tutorials │ 124

Unfortunately, some plugin developers view writing a readme.txt file as the
least important part of their job. So, we end up with things like the following:

• Descriptions with only one line,

• Descriptions with hardly any information,

• No translation into English,

• Typos,

• Confusion.

Why You Should Care About Your Readme.txt
A poorly written readme.txt does not necessarily indicate that the plugin is
poorly written; the code could be mind-blowingly good. But it does give the
impression of an overall lack of attention to detail and a lack of care for end
users. You see, no one will notice if a readme file is particularly awesome,
but they will notice if it’s bad.

You needn’t view the readme file as pain-in-the-butt homework that you’ve
got to do after all the fun you’ve had with coding. A readme benefits you.
Here’s how:

• Gives you an opportunity to say why your plugin is so good,

• Shows off your plugin’s features,

• Makes it easy for users to install and use the plugin,

• Anticipates support questions with a thorough FAQ,

• Links to your website and other products,

• Upsells your commercial services.

Smashing eBook #12│WordPress Tutorials │ 125

http://wordpress.org/extend/plugins/contact-form-plugin/
http://wordpress.org/extend/plugins/contact-form-plugin/
http://wordpress.org/extend/plugins/wordpress-tiniest-super-cache/
http://wordpress.org/extend/plugins/wordpress-tiniest-super-cache/
http://wordpress.org/extend/plugins/profitshare/
http://wordpress.org/extend/plugins/profitshare/
http://wordpress.org/extend/plugins/lite-cache/
http://wordpress.org/extend/plugins/lite-cache/
http://wordpress.org/extend/plugins/tahir-demo-plugin/
http://wordpress.org/extend/plugins/tahir-demo-plugin/

In this article, we’ll look at how to improve your WordPress readme file so
that it benefits both your users and you.

But first, the mechanics.

Using (Quasi-)Markdown
Markdown is a text-to-HTML conversion tool, developed by John Gruber
and Aaron Schwartz, that is used for readme files of plugins in the
WordPress repository.

You write the readme in Markdown, and Markdown will convert it to HTML
for the WordPress directory page, but it will still look good in WordPress’
back end and when you peek at it in your favorite text editor.

Take a look at the directory page for Simple Twitter Connect:

Smashing eBook #12│WordPress Tutorials │ 126

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://wordpress.org/extend/plugins/simple-twitter-connect/
http://wordpress.org/extend/plugins/simple-twitter-connect/

Simple Twitter Connect’s listing in the WordPress plugin directory.

Here’s how it appears when I download and extract the readme:

Smashing eBook #12│WordPress Tutorials │ 127

Simple Twitter Connect’s readme file in Notepad.

And here’s how it appears in WordPress’ back end:

Smashing eBook #12│WordPress Tutorials │ 128

Simple Twitter Connect’s readme on the “Edit Plugin” page in the WordPress
Dashboard.

It is readable no matter what medium it is viewed in. Imagine how difficult
reading the readme in a text editor would be if it was marked up in HTML.
Markdown makes your readme clear, readable and semantic.

Smashing eBook #12│WordPress Tutorials │ 129

WordPress.org uses what Mark Jacquith describes as quasi-markdown. It
basically works like markdown, and much of the syntax is the same, but
there are a few important differences, particularly in the headers.

To get you started with your WordPress readme, here’s a table containing
the syntax that you’ll need.

Smashing eBook #12│WordPress Tutorials │ 130

http://markjaquith.wordpress.com/2007/03/16/plugin-directory/
http://markjaquith.wordpress.com/2007/03/16/plugin-directory/

Syntax Example Outputs as Use for

.=== foo == .=== Plugin Name === <h2>Plugin Name</
h2>

Plugin name

.== foo == .==Description== <h3>Description</h3> Tabbed
section
headings

.= foo = .=Inline Heading= <h4>Inline heading</
h4>

Headings in
the body of
the readme

* foo * list item, *list item
list item
list item

Unordered
list

1. foo, 2. foo 1. list item, 2. list item
list item
list item

Ordered list

foo bar You talking to me? <blockquote>You
talking to me?</
blockquote>

block quotes

foo *emphasis* emphasis Italics

foo **bold** bold</
strong>

Bold

foo’ wp-config.php’ wp-config.php Any code
you want to
display
(including
shortcodes)

[link] (http://
foobar.com “foobar”)

[WordPress](http://
wordpress.org/ “Your
favorite software”)

<a href=”http://
wordpress.org/”
title=”Your favorite
software”>WordPress</
a>

Links

<http://foobar.com> <http://
wordpress.org>

<a href=”http://
wordpress.org”>
http://wordpress.org</
a>

Links

Smashing eBook #12│WordPress Tutorials │ 131

[youtube http://
foobarvideo.com]

[youtube http://
www.youtube.com/
watch?
v=CVmGBoPx6Ms]

<div
class=’video’><object
width=’532′
height=’325′><param
name=’movie’
value=’http://
www.youtube.com/v/
CVmGBoPx6Ms?
fs=1′></param>
<param
name=’allowFullScreen’
value=’true’></
param><param
name=’allowscriptacces
s’ value=’never’></
param><embed
src=’http://
www.youtube.com/v/
CVmGBoPx6Ms?fs=1′
type=’application/ x-
shockwave-flash’
allowscriptaccess=’neve
r’ allowfullscreen=’true’
width=’532′
height=’325′></
embed></object></
div>

Video

Now that you know how to write in WordPress-flavored Markdown, let’s get
started writing a readme.

Writing Your Readme.txt
Writing a readme is not hard, but putting a bit of thought into it beforehand
does pay off.

• What do you think end users will need in order to get optimal use from
your plugin?

• Do you need to include any special instructions or code snippets?

• What problems do you anticipate users running into?

• How can you make your plugin as attractive as possible?

Smashing eBook #12│WordPress Tutorials │ 132

• In a saturated market, what makes your plugin stand out?

With a bit of thought, you can produce a useful readme that shows off the
best aspects of your plugin.

When writing the readme, remember that if people are able to use your
plugin properly, then they will be less likely to come knocking on your door
asking for help.

Let’s look at each of the main readme sections to see what you can do to
improve it. As a reference point, we’ll use the readme for Simple Twitter
Connect, which is concise, useful and well-formed.

Plugin Header
The plugin’s header contains basic information about your plugin that the
user will take in at a glance. This information will be displayed in the plugin’s
directory as a quick reference for users.

Here’s what you’ll need to complete it:

Smashing eBook #12│WordPress Tutorials │ 133

http://wordpress.org/extend/plugins/simple-twitter-connect/
http://wordpress.org/extend/plugins/simple-twitter-connect/
http://wordpress.org/extend/plugins/simple-twitter-connect/
http://wordpress.org/extend/plugins/simple-twitter-connect/

• Contributors
Anyone who has contributed to the plugin. You should use a
contributor’s user name from WordPress.org, linking it to their
WordPress.org profiles, which list all of the contributor’s plugins.
Unfortunately, many developers don’t mention their WordPress user
name, which means they miss out on the opportunity to showcase the
rest of their work.

A contributor tag done right.

A contributor tag done wrong.

• Donate link
This is your chance to get a little something back from the WordPress
community. If you don’t have a donate link, you aren’t giving people the
opportunity to thank you!

• Tags
As on a blog, tags are used to categorize content. In a directory of
15,000+ WordPress plugins, using tags effectively makes it easy for
people to find your plugin. Keep the tags relevant, and think of what
people who need your plugin might be searching for. Some developers
tag their plugins with words that are only tangentially related.

Smashing eBook #12│WordPress Tutorials │ 134

This listing for the Twitter tag isn’t helpful because it’s bloated with
irrelevant content. As WordPress community members and contributors, we
have a responsibility to keep the directory of plugins as intuitive as possible.

• Author URI
Your home page.

Smashing eBook #12│WordPress Tutorials │ 135

• Plugin URI
The plugin’s home page. Note that the Author URI and Plugin URI aren’t
included in the readme template provided by WordPress. Including
them is definitely a good thing because they direct people to your
respective home pages.

• Requires at least
This is the version of WordPress that your plugin requires. Some people
don’t upgrade WordPress (some for valid reasons and some for dumb
reasons). Tell them whether WordPress will work with their version.

• Tested up to
Another piece of important information. This tells people which version
of WordPress your plugin has been tested up to.

• Stable tag
The stable tag tells WordPress which version of the plugin should
appear in the directory. This should be in numeric format, which is much
easier for WordPress to deal with. Aim for numbers like 1.5, 0.5 or
whatever version you’re at. If your stable version is in the trunk in
Subversion, then you can specify “trunk,” but that is the only time you
should use words instead of numbers.

Here’s what the header information for Simple Twitter Connect looks like:

=== Simple Twitter Connect ===
Contributors: Otto42
Donate link: https://www.paypal.com/cgi-bin/webscr?
cmd=_donations&business=otto%40ottodestruct%2ecom
Tags: twitter, connect, simple, otto, otto42, javascript
Requires at least: 3.0
Tested up to: 3.2
Stable tag: 0.15

Smashing eBook #12│WordPress Tutorials │ 136

http://wordpress.org/extend/plugins/about/readme.txt
http://wordpress.org/extend/plugins/about/readme.txt
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=otto%40ottodestruct%2ecom
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=otto%40ottodestruct%2ecom
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=otto%40ottodestruct%2ecom
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=otto%40ottodestruct%2ecom

TIPS FOR WRITING HEADER INFORMATION

• Use WordPress.org user names for contributors.

• Use a number for the stable tag.

• Include donation link to make some cash.

• Keep tags relevant.

• Test with the most recent WordPress version.

!e Short Description
The short description is what appears on the WordPress.org page that lists
plugins.

It also appears in the user’s list of installed plugins:

It’s your chance to craft a punchy 150-character description that will make
people want to install your plugin.

Unfortunately, some people miss the mark:

Smashing eBook #12│WordPress Tutorials │ 137

I’m not sure what this one is all about:

None of these short descriptions tell you anything about what the plugin
does. They’re totally useless in providing information to WordPress users.

Another problem is when developers do not add a short description at all. In
that case, the 150 characters are excerpted from the long description.
Check out the short description for Simple TrackbackSimple Trackback
Validation with Topsy Blocker:

Smashing eBook #12│WordPress Tutorials │ 138

http://wordpress.org/extend/plugins/simple-trackback-validation-with-topsy-blocker/
http://wordpress.org/extend/plugins/simple-trackback-validation-with-topsy-blocker/
http://wordpress.org/extend/plugins/simple-trackback-validation-with-topsy-blocker/
http://wordpress.org/extend/plugins/simple-trackback-validation-with-topsy-blocker/

The short description cuts off in the middle of a word. We know that the
plugin performs a test on trackbacks, but why? What for? How?

SHORT DESCRIPTIONS THAT GET IT RIGHT

• VideoPress
“Manage and embed videos hosted on VideoPress. Requires a
WordPress.com blog with the VideoPress premium upgrade.”

• Yet Another Related Posts Plugin
“Display a list of related entries on your site and feeds based on a
unique algorithm. Templating allows customization of the display.”

• BuddyPress
“Social networking in a box. Build a social network for your company,
school, sports team or niche community.”

• The Google+ Button
“Adds the Google +1 button to your site so your visitors can vote to tell
the world how great your site is!”

TIPS FOR WRITING A SHORT DESCRIPTION

• Stick to under 150 characters.

• Don’t rely on the text being pulled from the long description.

Smashing eBook #12│WordPress Tutorials │ 139

http://wordpress.org/extend/plugins/video/
http://wordpress.org/extend/plugins/video/
http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/
http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/
http://wordpress.org/extend/plugins/buddypress/
http://wordpress.org/extend/plugins/buddypress/
http://wordpress.org/extend/plugins/google/
http://wordpress.org/extend/plugins/google/

• Tell people what the plugin will do for them.

• Don’t worry about technical details. You can provide them in the long
description.

• Tell people whether the plugin has any requirements to work, such as a
subscription.

Long Description
The long description is where you really go to town. You’ve hooked people
with the short description; now it’s time to sell your plugin. Let’s check out
the long description for Simple Twitter Connect:

== Description ==
Simple Twitter Connect is a series of plugins that let you add
any sort of Twitter functionality you like to a WordPress
blog. This lets you have an integrated site without a lot of
coding, and still letting you customize it exactly the way
you’d like.

First, you activate and set up the base plugin, which makes
your site have basic Twitter functionality. Then, each of the
add-on plugins will let you add small pieces of specific
Twitter-related functionality, one by one.

Bonus: Unlike other Twitter plugins for WordPress, this one
helps you create your own Twitter application and identity, so
your tweets from here show up as being from Your Blog, not
from some plugin system. You’ll never see "posted by Simple
Twitter Connect" in your tweet stream, you’ll see "posted by
Your Blog Name". Great way to drive traffic back to your own
site and to see your own Twitter userbase.

Requires WordPress 3.0 and PHP 5.

Current add-ons
* Login using Twitter
* Comment using Twitter credentials

Smashing eBook #12│WordPress Tutorials │ 140

* Users can auto-tweet their comments
* Tweet button (official one from twitter)
* Tweetmeme button
* Auto-tweet new posts to an account
* Manual Tweetbox after Publish
* Full @anywhere support
* Auto-link all twitter names on the site (with optional
hovercards)
* Dashboard Twitter Widget

Coming soon
* More direct retweet button (instead of using Tweetmeme)
* (Got more ideas? Tell me!)

If you have suggestions for a new add-on, feel free to email
me at otto@ottodestruct.com.
Want regular updates? Become a fan of my sites on Facebook!

http://www.facebook.com/apps/application.php?id=116002660893

http://www.facebook.com/ottopress

Or follow my sites on Twitter!

http://twitter.com/ottodestruct

What makes this a good example of a long description?

1. The opening description is clear and useful. It tells you what the plugin
does and how it works.

2. The key features stand out (you can tell that the plugin creates your
own Twitter app).

3. The plugin’s requirements are listed.

4. Markdown is used to break up the text into sections and lists, making it
easier to read.

Smashing eBook #12│WordPress Tutorials │ 141

mailto:otto@ottodestruct.com
mailto:otto@ottodestruct.com
http://www.facebook.com/apps/application.php?id=116002660893
http://www.facebook.com/apps/application.php?id=116002660893
http://www.facebook.com/ottopress
http://www.facebook.com/ottopress

5. All current features are listed.

6. Planned features are listed.

7. The developer has included links to his Facebook page and Twitter
account.

A good long description is useful and relevant. It tells the user what the
plugin does and how it does it, and it provide anything else that the
developer feels is important. You can also use it to send users to your home
page or social-media profiles.

Here are some other plugins with great long descriptions:

• EG Attachments

• Google Maps All-in-One

• Next Gen Gallery

TIPS FOR WRITING A LONG DESCRIPTION

• Use Markdown to bring some variety to the formatting. For example,
add headings to break up sections, use lists, and put important points in
bold.

• Be clear about the plugin’s features.

• Include any requirements, such as other plugins that your plugin relies
on, or specific PHP versions.

• Link to any extended documentation on your website.

• Don’t be afraid to link to your website or social profiles.

• If you’ve got one, a video is a great demonstration tool.

Smashing eBook #12│WordPress Tutorials │ 142

http://wordpress.org/extend/plugins/eg-attachments/
http://wordpress.org/extend/plugins/eg-attachments/
http://wordpress.org/extend/plugins/wordpress-google-maps/
http://wordpress.org/extend/plugins/wordpress-google-maps/
http://wordpress.org/extend/plugins/nextgen-gallery/
http://wordpress.org/extend/plugins/nextgen-gallery/

Installation
The installation section should include everything that a person needs to
get the plugin up and running correctly. Often, you can keep this brief.
Check out the instructions for Simple Twitter Connect:

1. Upload 'plugin-name.php' to the '/wp-content/plugins/'
directory,
2. Activate the plugin through the 'Plugins' menu in
WordPress.

For many plugins, this will suffice. But some plugins need detailed
instructions. Check out the ones for these:

• WP Super Cache,

• WordPress MU Domain Mapping.

Users need mammoth instructions to set up both of these plugins. WP Super
Cache requires you to look in your .htaccess file, and Domain Mapping
needs you to move files to /wp-content/ and to edit wp-config.php.

TIPS FOR WRITING INSTRUCTIONS

• Be brief, a few lines if possible.

• Include everything the user needs to install the plugin.

• Make sure each step logically follows the preceding one.

• Include any code snippets that the user might need.

• Be clear and concise. This is the place for instructions, not sales.

Smashing eBook #12│WordPress Tutorials │ 143

http://wordpress.org/extend/plugins/wp-super-cache/installation/
http://wordpress.org/extend/plugins/wp-super-cache/installation/
http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/installation/
http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/installation/

FAQ
The FAQ (frequently asked questions) section is your opportunity to
troubleshoot problems before they even get posted to WordPress’ support
forums. OK, so a few people will probably never bother looking at the FAQ
to see whether their question is addressed there, which is annoying, but at
least you will be able to direct them to the FAQ.

Some FAQs, however, are pretty lousy. In fact, some plugins, even popular
ones, lack any FAQ at all. This is a problem: if too many plugin developers
don’t include an FAQ, then some WordPress users will assume that plugins
normally don’t have one and will run straight to the support forums. This
wastes the time of people who have taken the trouble to include an FAQ.

Let’s check out the FAQ for Simple Twitter Connect:

== Frequently Asked Questions ==

= Whoa, what's with all these plugins? =
The principle behind this plugin is to enable small pieces of
Twitter functionality, one at a time.

Thus, you have the base plugin, which does nothing except to
enable your site for Twitter OAuth in general. It's required
by all the other plugins.

Then you have individual plugins, one for each piece of
functionality. One for enabling comments, one for adding
Login, etc. These are all smaller and simpler, for the most
part, because they don't have to add all the Twitter
connections stuff that the base plugin adds.

= The comments plugin isn't working! =

You have to modify your theme to use the comments plugin.

In your comments.php file (or wherever your comments form is),
you need to do the following.

Smashing eBook #12│WordPress Tutorials │ 144

http://wordpress.org/extend/plugins/flexo-facebook-manager/faq/
http://wordpress.org/extend/plugins/flexo-facebook-manager/faq/
http://wordpress.org/extend/plugins/network-publisher/
http://wordpress.org/extend/plugins/network-publisher/
http://wordpress.org/extend/plugins/network-publisher/
http://wordpress.org/extend/plugins/network-publisher/

1. Find the three inputs for the author, email, and url
information. They need to have those ID's on the inputs
(author, email, url). This is what the default theme and all
standardized themes use, but some may be slightly different.
You'll have to alter them to have these ID's in that case.

2. Just before the first input, add this code:
[div id="comment-user-details"]
[?php do_action('alt_comment_login'); ?]
(Replace the []'s with normal html greater/less than signs).

3. Just below the last input (not the comment text area, just
the name/email/url inputs, add this:
[/div]

That will add the necessary pieces to allow the script to
work.

Hopefully, a future version of WordPress will make this
simpler.

= Twitter Avatars look wrong. =

Twitter avatars use slightly different code than other
avatars. They should style the same, but not all themes will
have this working properly, due to various theme designs and
such.

However, it is almost always possible to correct this with
some simple CSS adjustments. For this reason, they are given a
special "twitter-avatar" class, for you to use to style them
as you need. Just use .twitter-avatar in your CSS and add
styling rules to correct those specific avatars.

= Why can't I email people who comment using Twitter? =

Twitter offers no way to get a valid email address for a user.
So the comments plugin uses a fake address of the twitter's
username @fake.twitter.com. The "fake" is the giveaway here.

= When users connect using Twitter on the Comments section,
there's a delay before their info appears. =

Smashing eBook #12│WordPress Tutorials │ 145

Yes. In order to make the plugin more compatible with caching
plugins like WP-Super-Cache, the data for a Twitter connect
account is retrieved from the server using an AJAX request.
This means that there will be a slight delay while the data is
retrieved, but the page has already been loaded and displayed.
Most of the time this will not be noticeable.

= Why does the settings screen warn me that I don't have a URL
shortener plugin? =

Simple Twitter Connect does not implement a URL shortening
service in favor of letting other plugins implement one for
it. WordPress 3.0 includes a new shortlink method for plugins
to implement this properly.

A shortener plugin should implement the "get_shortlink" filter
for it to be detected. WordPress 3.0 will be required for this
to work.

The WordPress.com stats plugin implements this, and it
provides shortlinks to "wp.me" URLs. If you wish to use
another shortener plugin, tell that plugin's author to
implement this same standard, and the plugin will
automatically be detected and used by Simple Twitter Connect.

That’s a pretty thorough FAQ! It’s useful because it anticipates any
questions a user might have. It’s a pre-emptive strike: get in there with the
answers before you see anxiety explosions in the support forums.

When writing support documentation such as an FAQ, aim at the lowest
common denominator. A developer who is using your plugin likely won’t
need an FAQ, and if they do, they’ll probably get the gist of it quickly and be
able to implement it in an instant. There’s a rumor going around that
WordPress is easy to use, which means that a lot of people who don’t know
a whole lot about code will be fiddling around with it and break stuff. They
are the people to whom you should be addressing your documentation,
because they’ll be giving you the biggest headaches in the support forums.

Smashing eBook #12│WordPress Tutorials │ 146

TIPS FOR WRITING AN FAQ

• Anticipate issues and answer them in advance.

• Deal with any known conflicts with old WordPress versions or other
plugins.

• If a problem recurs in the support forums, add it to your FAQ.

• Use Markdown to highlight each question and follow it with an answer.

• Include any code snippets or shortcodes that the user might need.

• The FAQ is a tool to help you. Use it properly, and save some money
on Aspirin.

Screenshots
Unfortunately, many developers think that screenshots are the realm of
theme designers. Perhaps you assume that there’s nothing exciting or sexy
to see in your plugin, so why bother providing screenshots? Check out the
screenshots for Simple Twitter Connect. They show both the UI and the
front end of the plugin, giving you an idea what it will be like before
installing it.

Screenshots help users decide whether a plugin is right for them. As a
developer, you might not think your UI is particularly interesting, but as an
end user, I like to look at the settings before installing a plugin. It might not
be a deal-breaker, but it does help me decide.

Here are some plugins with nice screenshots:

• Social Profiles Sidebar Widget

• WP Page Navi

Smashing eBook #12│WordPress Tutorials │ 147

http://wordpress.org/extend/plugins/simple-twitter-connect/screenshots/
http://wordpress.org/extend/plugins/simple-twitter-connect/screenshots/
http://wordpress.org/extend/plugins/social-profiles-sidebar-widget/screenshots/
http://wordpress.org/extend/plugins/social-profiles-sidebar-widget/screenshots/
http://wordpress.org/extend/plugins/wp-pagenavi/screenshots/
http://wordpress.org/extend/plugins/wp-pagenavi/screenshots/

• Next Gen Gallery

TIPS FOR PUTTING TOGETHER SCREENSHOTS

• Name screenshots as screenshot-1.png, screenshot-2.png, etc.

• Include at least one screenshot of the UI, and one of what it does in the
front end (if it does anything there).

• Keep the size of the screenshot file small.

Other Notes
Including “Other Notes” is not essential. Many plugins don’t have them;
Simple Twitter Connect doesn’t, for instance. But the section is useful if you
have additional information that doesn’t necessarily fit in any other section.

THINGS YOU CAN INCLUDE IN “OTHER NOTES”

• Credits

• To-do list

• Localizations

• Filters

• Set-up guide

• Requirements

• External links

• Upgrading information

• Licence

Smashing eBook #12│WordPress Tutorials │ 148

http://wordpress.org/extend/plugins/nextgen-gallery/screenshots/
http://wordpress.org/extend/plugins/nextgen-gallery/screenshots/
http://wordpress.org/extend/plugins/nextgen-gallery/other_notes/
http://wordpress.org/extend/plugins/nextgen-gallery/other_notes/
http://wordpress.org/extend/plugins/comment-rating/other_notes/
http://wordpress.org/extend/plugins/comment-rating/other_notes/
http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/other_notes/
http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/other_notes/
http://wordpress.org/extend/plugins/wordpress-importer/other_notes/
http://wordpress.org/extend/plugins/wordpress-importer/other_notes/
http://wordpress.org/extend/plugins/add-link-to-facebook/other_notes/
http://wordpress.org/extend/plugins/add-link-to-facebook/other_notes/
http://wordpress.org/extend/plugins/jw-player-plugin-for-wordpress/other_notes/
http://wordpress.org/extend/plugins/jw-player-plugin-for-wordpress/other_notes/
http://wordpress.org/extend/plugins/xhanch-my-twitter/other_notes/
http://wordpress.org/extend/plugins/xhanch-my-twitter/other_notes/
http://wordpress.org/extend/plugins/wordbooker/other_notes/
http://wordpress.org/extend/plugins/wordbooker/other_notes/
http://wordpress.org/extend/plugins/seo-automatic-links/other_notes/
http://wordpress.org/extend/plugins/seo-automatic-links/other_notes/

Changelog
A changelog, as you would guess, is a log of all changes you’ve made to
the plugin. It is an important part of the documentation and shouldn’t be
ignored. A changelog may not make for the most exciting reading, but it is
helpful. It tells a user what changes have been made to a plugin, and it
makes clear why the user should update. It’s also useful for tracking the
development of the plugin over time. A changelog gives a plugin context
and history, and that can be important for people running big projects or
important client websites.

Here’s a scenario: a user sees an alert in the admin area telling them that
they need to update a plugin.

This user needs to update WP Touch!

The changelog shows the changes, so that the user can decide whether to
update.

Smashing eBook #12│WordPress Tutorials │ 149

The changelog helps us decide.

Maintaining some websites is a balancing act, and some administrators
don’t want to upgrade unless absolutely necessary (say, for security updates
or for new must-have features). Give them the information they need to be
able to decide for themselves. If the update is minor, they might decide to
save themselves the hassle and wait until something major arrives.

Smashing eBook #12│WordPress Tutorials │ 150

The changelog for Simple Twitter Connect is lengthy, not surprisingly. You’ll
see all of the minor and major changes that have been made. Being able to
see this plugin’s history and development is so useful.

TIPS FOR WRITING THE CHANGELOG

• No change is insignificant. Make sure to add every single change.

• The changelog must have the most recent changes first.

Conclusion
Underestimating the importance of the readme file does a disservice to your
code and to the WordPress community; so, seeing so many plugin
developers do just that is sad. Don’t fight the readme: embrace it. It’s an
important part of your documentation. A good readme is useful, helping
users get set up to use the plugin as effectively as possible. And it’s useful
to you, the developer. The readme demonstrates your plugin and
anticipates problems, and it’ll save you time and headaches with support
requests.

Here are some useful resources to get your plugin ready for the WordPress
repository:

• WordPress readme.txt template
The readme.txt template provided by WordPress.org. Download it and
stick your readme text in it to get started.

• WordPress readme.txt validator
Validating your readme before submitting it is helpful. This tool will flag
any issues so that you can get it just right.

Smashing eBook #12│WordPress Tutorials │ 151

http://wordpress.org/extend/plugins/simple-twitter-connect/changelog/
http://wordpress.org/extend/plugins/simple-twitter-connect/changelog/
http://wordpress.org/extend/plugins/about/readme.txt
http://wordpress.org/extend/plugins/about/readme.txt
http://wordpress.org/extend/plugins/about/validator/
http://wordpress.org/extend/plugins/about/validator/

• WordPress Plugin Readme File Generator
Feeling lazy? If you would prefer to fill in a form than write up a
readme.txt file, try this generator.

• “How to Publish to the WordPress Plugin Repository”
There’s more to publishing in the repository than writing a readme. This
tutorial takes you through the steps to getting published.

• “How to Write a WordPress Plugin: 12 Essential Guides and Resources”
Haven’t even started writing your plugin yet? Check out this collection
of plugin development resources.

Smashing eBook #12│WordPress Tutorials │ 152

http://sudarmuthu.com/wordpress/wp-readme
http://sudarmuthu.com/wordpress/wp-readme
http://wp.tutsplus.com/tutorials/how-to-publish-to-the-wordpress-plugin-repository/
http://wp.tutsplus.com/tutorials/how-to-publish-to-the-wordpress-plugin-repository/
http://wpmu.org/how-to-write-a-wordpress-plugin-12-essential-guides-and-resources/
http://wpmu.org/how-to-write-a-wordpress-plugin-12-essential-guides-and-resources/

Integrating Amazon S3 With WordPress

Sameer Borate

Computing is full of buzzwords, “cloud computing” being the latest one. But
unlike most trends that fizzle out after the initial surge, cloud computing is
here to stay. This article goes over Amazon’s S3 cloud storage service and
guides you to implementing a WordPress plugin that backs up your
WordPress database to Amazon’s S3 cloud. Note that this is not a tutorial on
creating a WordPress plugin from scratch, so some familiarity with plugin
development is assumed.

The reason for using Amazon S3 to store important data follows from the
“3-2-1” backup rule, coined by Peter Krogh. According to the 3-2-1 rule, you

Smashing eBook #12│WordPress Tutorials │ 153

would keep three copies of any critical data: the original data, a backup
copy on removable media, and a second backup at an off-site location (in
our case, Amazon’s S3 cloud).

Cloud Computing, Concisely
Cloud computing is an umbrella term for any data or software hosted
outside of your local system. Cloud computing is categorized into three
main service types: infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS).

• Infrastructure as a service
IaaS provides virtual storage, virtual machines and other hardware
resources that clients can use on a pay-per-use basis. Amazon S3,
Amazon EC2 and RackSpace Cloud are examples of IaaS.

• Platform as a service
PaaS provides virtual machines, application programming interfaces,
frameworks and operating systems that clients can deploy for their own
applications on the Web. Force.com, Google AppEngine and Windows
Azure are examples of PaaS.

• Software as a service
Perhaps the most common type of cloud service is SaaS. Most people
use services of this type daily. SaaS provides a complete application
operating environment, which the user accesses through a browser
rather than a locally installed application. SalesForce.com, Gmail,
Google Apps and Basecamp are some examples of SaaS.

For all of the service types listed above, the service provider is responsible
for managing the cloud system on behalf of the user. The user is spared the

Smashing eBook #12│WordPress Tutorials │ 154

tedium of having to manage the infrastructure required to operate a
particular service.

Amazon S3 In A Nutshell
Amazon Web Services (AWS) is a bouquet of Web services offered by
Amazon that together make up a cloud computing platform. The most
essential and best known of these services are Amazon EC2 and Amazon
S3. AWS also includes CloudFront, Simple Queue Service, SimpleDB, Elastic
Block Store. In this article, we will focus exclusively on Amazon S3.

Amazon S3 is cloud-based data-storage infrastructure that is accessible to
the user programmatically via a Web service API (either SOAP or REST).
Using the API, the user can store various kinds of data in the S3 cloud. They
can store and retrieve data from anywhere on the Web and at anytime using
the API. But S3 is nothing like the file system you use on your computer. A
lot of people think of S3 as a remote file system, containing a hierarchy of
files and directories hosted by Amazon. Nothing could be further from the
truth.

Amazon S3 is a flat-namespace storage system, devoid of any hierarchy
whatsoever. Each storage container in S3 is called a “bucket,” and each
bucket serves the same function as that of a directory in a normal file
system. However, there is no hierarchy within a bucket (that is, you cannot
create a bucket within a bucket). Each bucket allows you to store various
kinds of data, ranging in size from 1 B to a whopping 5 GB.

A file stored in a bucket is referred to as an object. An object is the basic
unit of stored data on S3. Objects consist of data and meta data. The meta
data is a set of name-value pairs that describe the object. Meta data is
optional but often adds immense value, whether it’s the default meta data

Smashing eBook #12│WordPress Tutorials │ 155

added by S3 (such as the date last modified) or standard HTTP meta data
such as Content-Type.

So, what kinds of objects can you store on S3? Any kind you like. It could be
a simple text file, a style sheet, programming source code, or a binary file
such as an image, video or ZIP file. Each S3 object has its own URL, which
you can use to access the object in a browser (if appropriate permissions
are set — more on this later).

You can write the URL in two formats, which look something like this:

The bucket’s name here is deliberately simple, codediesel. It can be more
complex, reflecting the structure of your application, like
codediesel.wordpress.backup or codediesel.assets.images.

Every S3 object has a unique URL, formed by concatenating the following
components:

1. Protocol (http:// or https://),

2. S3 end point (s3.amazonaws.com),

Smashing eBook #12│WordPress Tutorials │ 156

3. Bucket’s name,

4. Object key, starting with /.

In order to be able to identify buckets, the S3 system requires that you
assign a name to each bucket, which must be unique across the S3 bucket
namespace. So, if a user has named one of their buckets company-docs,
you cannot create a bucket with that name anywhere in the S3 namespace.
Object names in a bucket, however, must be unique only to that bucket; so,
two different buckets can have objects with the same name. Also, you can
describe objects stored in buckets with additional information using meta
data.

Bucket names must comply with the following requirements:

• May contain lowercase letters, numbers, periods (.), underscores (_)
and hyphens (-);

• Must begin with a number or letter;

• Must be between 3 and 255 characters long;

• May not be formatted as an IP address (e.g. 265.255.5.4).

In short, Amazon S3 provides a highly reliable cloud-based storage
infrastructure, accessible via a SOAP or REST API. Some common usage
scenarios for S3 are:

• Backup and storage
Provide data backup and storage services.

• Host applications
Provide services that deploy, install and manage Web applications.

Smashing eBook #12│WordPress Tutorials │ 157

• Host media
Build a redundant, scalable and highly available infrastructure that hosts
video, photo or music uploads and downloads.

• Deliver software
Host your software applications that customers can download.

Amazon S3’s Pricing Model
Amazon S3 is a paid service; you need to attach a credit card to your
Amazon account when signing up. But it is surprisingly low priced, and you
pay only for what you use; if you use no resources in your S3 account, you
pay nothing. Also, as part of the AWS “Free Usage Tier,” upon signing up,
new AWS customers receive 5 GB of Amazon S3 storage, 20,000 GET
requests, 2,000 PUT requests, and 15 GB of data transfer out each month
free for one year.

So, how much do you pay after the free period. As a rough estimate, if you
stored 5 GB of data per month, with data transfers of 15 GB and 40,000 GET
and PUT requests a month, the cost would be around $2.60 per month.
That’s lower than the cost of a burger — inexpensive by any standard. The
prices may change, so use the calculator on the S3 website.

Your S3 usage is charged according to three main parameters:

• The total amount of data stored,

• The total amount of data transferred in and out of S3 per month,

• The number of requests made to S3 per month.

Smashing eBook #12│WordPress Tutorials │ 158

Your S3 storage charges are calculated on a unit known as a gigabyte-
month. If you store 1 GB for one month, you’ll be charged for one gigabyte-
month, which is $0.14.

Your data transfer charges are based on the amount of data uploaded and
downloaded from S3. Data transferred out of S3 is charged on a sliding
scale, starting at $0.12 per gigabyte and decreasing based on volume,
reaching $0.050 per gigabyte for all outgoing data transfer in excess of 350
terabytes per month. Note that there is no charge for data transferred within
an Amazon S3 “region” via a COPY request, and no charge for data
transferred between Amazon EC2 and Amazon S3 within the same region or
for data transferred between the Amazon EC2 Northern Virginia region and
the Amazon S3 US standard region. To avoid surprises, always check the
latest pricing policies on Amazon.

Introduction To !e Amazon S3 API And CloudFusion
Now with the theory behind us, let’s get to the fun part: writing code. But
before that, you will need to register with S3 and create an AWS account. If
you don’t already have one, you’ll be prompted to create one when you sign
up for Amazon S3.

Before moving on to the coding part, let’s get acquainted with some visual
tools that we can use to work with Amazon S3. Various visual and
command-line tools are available to help you manage your S3 account and
the data in it. Because the visual tools are easy to work with and user-
friendly, we will focus on them in this article. I prefer working with the AWS
Management Console for security reasons.

Smashing eBook #12│WordPress Tutorials │ 159

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/

AWS MANAGEMENT CONSOLE

The Management Console is a part of the AWS. Because it is a part of your
AWS account, no configuration is necessary. Once you’ve logged in, you
have full access to all of your S3 data and other AWS services. You can
create new buckets, create objects, apply security policies, copy objects to
different buckets, and perform a multitude of other functions.

Smashing eBook #12│WordPress Tutorials │ 160

S3FOX ORGANIZER

The other popular tool is S3Fox Organizer. S3Fox Organizer is a Firefox
extension that enables you to upload and download files to and from your
Amazon S3 account. The interface, which opens in a Firefox browser tab,
looks very much like a regular FTP client with dual panes. It displays files on
your PC on the left, files on S3 on the right, and status messages and
information in a panel at the bottom.

Onto !e Coding
As stated earlier, AWS is Amazon’s Web service infrastructure that
encompasses various cloud services, including S3, EC2, SimpleDB and

Smashing eBook #12│WordPress Tutorials │ 161

http://www.s3fox.net/
http://www.s3fox.net/

CloudFront. Integrating these varied services can be a daunting task.
Thankfully, we have at our disposal an SDK library in the form of
CloudFusion, which enables us to work with AWS effortlessly. CloudFusion
is now the official AWS SDK for PHP, and it encompasses most of Amazon’s
cloud products: S3, EC2, SimpleDB, CloudFront and many more. For this
post, I downloaded the ZIP version of the CloudFusion SDK, but the library is
also available as a PEAR package. So, go ahead: download the latest
version from the official website, and extract the ZIP to your working
directory or to your PHP include path. In the extracted directory, you will
find the config-sample.inc.php file, which you should rename to
config.inc.php. You will need to make some changes to the file to
reflect your AWS credentials.

In the config file, locate the following lines:

define('AWS_KEY', '');
define('AWS_SECRET_KEY', '');

Modify the lines to mirror your Amazon AWS’ security credentials. You can
find the credentials in your Amazon AWS account section, as shown below.

Get the keys, and fill them in on the following lines:

define('AWS_KEY', 'your_access_key_id');
define('AWS_SECRET_KEY', 'your_secret_access_key');

You can retrieve your access key and secret key from your Amazon account
page:

Smashing eBook #12│WordPress Tutorials │ 162

http://getcloudfusion.com/
http://getcloudfusion.com/

With all of the basic requirements in place, let’s create our first bucket on
Amazon S3, with a name of your choice. The following example shows a
bucket by the name of com.smashingmagazine.images. (Of course, by
the time you read this, this name may have already be taken.) Choose a
structure for your bucket’s name that is relevant to your work. For each
bucket, you can control access to the bucket, view access logs for the
bucket and its objects, and set the geographical region where Amazon S3
will store the bucket and its contents.

/* Include the CloudFusion SDK class */
require_once(‘sdk-1.4.4/sdk.class.php');

/* Our bucket name */
$bucket = 'com.smashingmagazine.images’;

/* Initialize the class */
$s3 = new AmazonS3();

/* Create a new bucket */

Smashing eBook #12│WordPress Tutorials │ 163

$resource = $s3->create_bucket($bucket,
AmazonS3::REGION_US_E1);

/* Check if the bucket was successfully created */
if ($resource->isOK()) {
 print("'${bucket}' bucket created\n");
} else {
 print("Error creating bucket '${bucket}'\n");
}

Let’s go over each line in the example above. First, we included the
CloudFusion SDK class in our file. You’ll need to adjust the path depending
on where you’ve stored the SDK files.

require_once('sdk-1.4.4/sdk.class.php');

Next, we instantiated the Amazon S3 class:

$s3 = new AmazonS3();

In the next step, we created the actual bucket; in this case,
com.smashingmagazine.images. Again, your bucket’s name must be
unique across all existing bucket names in Amazon S3. One way to ensure
this is to prefix a word with your company’s name or domain, as we’ve done
here. But this does not guarantee that the name will be available. Nothing
prevents anyone from creating a bucket named com.microsoft.apps or
com.ibm.images, so choose wisely.

$bucket = 'com.smashingmagazine.images’;
$resource = $s3->create_bucket($bucket,
AmazonS3::REGION_US_E1);

To reiterate, bucket names must comply with the following requirements:

• May contain lowercase letters, numbers, periods (.), underscores (_) and
hyphens (-);

• Must start with a number or letter;

Smashing eBook #12│WordPress Tutorials │ 164

• Must be between 3 and 255 characters long;

• May not be formatted as an IP address (e.g. 265.255.5.4).

Also, you’ll need to select a geographical location for your bucket. A bucket
can be stored in one of several regions. Reasons for choosing one region
over another might be to optimize for latency, to minimize costs, or to satisfy
regulatory requirements. Many organizations have privacy policies and
regulations on where to store data, so consider this when selecting a
location. Objects never leave the region they are stored in unless you
explicitly transfer them to another region. That is, if your data is stored on
servers located in the US, it will never be copied or transferred by Amazon
to servers outside of this region; you’ll need to do that manually using the
API or AWS tools. In the example above, we have chosen the
REGION_US_E1 region.

Here are the permitted values for regions:

• AmazonS3::REGION_US_E1

• AmazonS3::REGION_US_W1

• AmazonS3::REGION_EU_W1

• AmazonS3::REGION_APAC_SE1

• AmazonS3::REGION_APAC_NE1

Finally, we checked whether the bucket was successfully created:

if ($resource->isOK()) {
 print("'${bucket}' bucket created\n");
} else {
 print("Error creating bucket '${bucket}'\n");
}

Smashing eBook #12│WordPress Tutorials │ 165

Now, let’s see how to get a list of the buckets we’ve created on S3. So,
before proceeding, create a few more buckets to your liking. Once you have
a few buckets in your account, it is time to list them.

/* Include the CloudFusion SDK class */
require_once ('sdk-1.4.4/sdk.class.php');

/* Our bucket name */
$bucket = 'com.smashingmagazine.images;

/* Initialize the class */
$s3 = new AmazonS3();

/* Get a list of buckets */
$buckets = $s3->get_bucket_list();

if($buckets) {
 foreach ($buckets as $b) {
 echo $b . "\n";
 }
}

The only new part in the code above is the following line, which gets an
array of bucket names:

$buckets = $s3->get_bucket_list();

Finally, we printed out all of our buckets’ names.

if($buckets) {
 foreach ($buckets as $b) {
 echo $b . "\n";
 }
}

This concludes our overview of creating and listing buckets in our S3
account. We also learned about S3Fox Organizer and the AWS console
tools for working with your S3 account.

Smashing eBook #12│WordPress Tutorials │ 166

Uploading Data To Amazon S3
Now that we’ve learned how to create and list buckets in S3, let’s figure out
how to put objects into buckets. This is a little complex, and we have a
variety of options to choose from. The main method for doing this is
create_object. The method takes the following format:

create_object ($bucket, $filename, [$opt = null])

The first parameter is the name of the bucket in which the object will be
stored. The second parameter is the name by which the file will be stored
on S3. Using only these two parameters is enough to create an empty
object with the given file name. For example, the following code would
create an empty object named config-empty.inc in the
com.magazine.resources bucket:

$s3 = new AmazonS3();
$bucket = 'com.magazine.resources';
$response = $s3->create_object($bucket, 'config-empty.inc');

// Success?
var_dump($response->isOK());

Once the object is created, we can access it using a URL. The URL for the
object above would be:

https://s3.amazonaws.com/com.magazine.resources/config-empty.inc

Of course, if you tried to access the URL from a browser, you would be
greeted with an “Access denied” message, because objects stored on S3
are set to private by default, viewable only by the owner. You have to
explicitly make an object public (more on that later).

Smashing eBook #12│WordPress Tutorials │ 167

To add some content to the object at the time of creation, we can use the
following code. This would add the text “Hello World” to the config-
empty.inc file.

$response = $s3->create_object($bucket, config-empty.inc ‘,
 array(
 'body' => Hello World!'
));

As a complete example, the following code would create an object with the
name simple.txt, along with some content, and save it in the given bucket.
An object may also optionally contain meta data that describes that object.

/* Initialize the class */
$s3 = new AmazonS3();

/* Our bucket name */
$bucket = 'com.magazine.resources’;

$response = $s3->create_object($bucket, 'simple.txt',
 array(
 'body' => Hello World!'
));

if ($response->isOK())
{
 return true;
}

You can also upload a file, rather than just a string, as shown below.
Although many options are displayed here, most have a default value and
may be omitted. More information on the various options can be found in
the “AWS SDK for PHP 1.4.7.”

require_once(‘sdk-1.4.4/sdk.class.php');

$s3 = new AmazonS3();
$bucket = 'com.smashingmagazine.images’;

Smashing eBook #12│WordPress Tutorials │ 168

http://docs.amazonwebservices.com/AWSSDKforPHP/latest/#m=AmazonS3/create_object
http://docs.amazonwebservices.com/AWSSDKforPHP/latest/#m=AmazonS3/create_object

$response = $s3->create_object($bucket, 'source.php',
 array(
 'fileUpload' => 'test.php',
 'acl' => AmazonS3::ACL_PRIVATE,
 'contentType' => 'text/plain',
 'storage' => AmazonS3::STORAGE_REDUCED,
 'headers' => array(// raw headers
 'Cache-Control' => 'max-age',
 'Content-Encoding' => 'text/plain',
 'Content-Language' => 'en-US',
 'Expires' => 'Thu, 01 Dec 1994 16:00:00 GMT',
)
));

// Success?
var_dump($response->isOK());

Details on the various options will be explained in the coming sections. For
now, take on faith that the above code will correctly upload a file to the S3
server.

Writing Our Amazon S3 WordPress Plugin
With some background on Amazon S3 behind us, it is time to put our
learning into practice. We are ready to build a WordPress plugin that will
automatically back up our WordPress database to the S3 server and restore
it when needed.

To keep the article focused and at a reasonable length, we’ll assume that
you’re familiar with WordPress plugin development. If you are a little sketchy
on the fundamentals, read “How to Create a WordPress Plugin” to get on
track quickly.

Smashing eBook #12│WordPress Tutorials │ 169

http://wp.smashingmagazine.com/2011/09/30/how-to-create-a-wordpress-plugin/
http://wp.smashingmagazine.com/2011/09/30/how-to-create-a-wordpress-plugin/

THE PLUGIN’S FRAMEWORK

We’ll first create a skeleton and then gradually fill in the details. To create a
plugin, navigate to the wp-content/plugins folder, and create a new
folder named s3-backup. In the new folder, create a file named s3-
backup.php. Open the file in the editor of your choice, and paste the
following header information, which will describe the plugin for WordPress:

/*
Plugin Name: Amazon S3 Backup
Plugin URI: http://cloud-computing-rocks.com
Description: Plugin to back up WordPress database to Amazon S3
Version: 1.0
Author: Mr. Sameer
Author URI: http://www.codediesel.com
License: GPL2
*/

Once that’s done, go to the plugin’s page in the admin area, and activate
the plugin.

Now that we’ve successfully installed a bare-bones WordPress plugin, let’s
add the meat and create a complete working system. Before we start writing
the code, we should know what the admin page for the plugin will ultimately
look like and what tasks the plugin will perform. This will guide us in writing
the code. Here is the main settings page for our plugin:

Smashing eBook #12│WordPress Tutorials │ 170

http://cloud-computing-rocks.com
http://cloud-computing-rocks.com
http://www.codediesel.com
http://www.codediesel.com

The interface is fairly simple. The primary task of the plugin will be to back
up the current WordPress database to an Amazon S3 bucket and to restore
the database from the bucket. The settings page will also have a function for
naming the bucket in which the backup will be stored. Also, we can specify
whether the backup will be available to the public or accessible only to you.

Below is a complete outline of the plugin’s code. We will elaborate on each
section in turn.

/*
Plugin Name: Amazon S3 Backup
Plugin URI: http://cloud-computing-rocks.com
Description: Plugin to back up WordPress database to Amazon S3
Version: 1.0
Author: Mr. Sameer
Author URI: http://www.codediesel.com
License: GPL2
*/

$plugin_path = WP_PLUGIN_DIR . "/" .
dirname(plugin_basename(__FILE__));

Smashing eBook #12│WordPress Tutorials │ 171

http://cloud-computing-rocks.com
http://cloud-computing-rocks.com
http://www.codediesel.com
http://www.codediesel.com

/* CloudFusion SDK */
require_once($plugin_path . '/sdk-1.4.4/sdk.class.php');

/* WordPress ZIP support library */
require_once(ABSPATH . '/wp-admin/includes/class-pclzip.php');

add_action('admin_menu', 'add_settings_page');

/* Save or Restore Database backup */
if(isset($_POST['aws-s3-backup'])) {
…
}

/* Generic Message display */
function showMessage($message, $errormsg = false) {
…
}

/* Back up WordPress database to an Amazon S3 bucket */
function backup_to_AmazonS3() {
…
}

/* Restore WordPress backup from an Amazon S3 bucket */
function restore_from_AmazonS3() {
…
}

function add_settings_page() {
…
}

function draw_settings_page() {
…
}

Smashing eBook #12│WordPress Tutorials │ 172

Here is the directory structure that our plugin will use:

plugins (WordPress plugin directory)
---s3-backup (our plugin directory)
-------s3backup (restored backup will be stored in this
directory)
-------sdk-1.4.4 (CloudFusion SDK directory)
-------s3-backup.php (our plugin source code)

Let’s start coding the plugin. First, we’ll initialize some variables for paths
and include the CloudFusion SDK. A WordPress database can get large, so
to conserve space and bandwidth, the plugin will need to compress the
database before uploading it to the S3 server. To do this, we will use the
class-pclzip.php ZIP compression support library, which is built into
WordPress. Finally, we’ll hook the settings page to the admin menu.

$plugin_path = WP_PLUGIN_DIR . "/" .
dirname(plugin_basename(__FILE__));

/* CloudFusion SDK */
require_once($plugin_path . '/sdk-1.4.4/sdk.class.php');

/* WordPress ZIP support library */
require_once(ABSPATH . '/wp-admin/includes/class-pclzip.php');

/* Create the admin settings page for our plugin */
add_action('admin_menu', 'add_settings_page');

Every WordPress plugin must have its own settings page. Ours is a simple
one, with a few buttons and fields. The following is the code for it, which will
handle the mundane work of saving the bucket’s name, displaying the
buttons, etc.

function draw_settings_page() {
 ?>
 <div class="wrap">
 <h2><?php echo('WordPress Database Amazon S3
Backup') ?></h2>
 <form method="post" action="options.php">

Smashing eBook #12│WordPress Tutorials │ 173

 <input type="hidden" name="action"
value="update" />
 <input type="hidden" name="page_options"
value="aws-s3-access-public, aws-s3-access-bucket" />
 <?php
 wp_nonce_field('update-options');
 $access_options = get_option('aws-s3-access-
public');
 ?>
 <p>
 <?php echo('Bucket Name:') ?>
 <input type="text" name="aws-s3-access-bucket"
size="64" value="<?php echo get_option('aws-s3-access-
bucket'); ?>" />
 </p>
 <p>
 <?php echo('Public:') ?>
 <input type="checkbox" name="aws-s3-access-
public" <?php checked(1 == $access_options); ?> value="1" />
 </p>
 <p class="submit">
 <input type="submit" class="button-primary"
name="Submit" value="<?php echo('Save Changes') ?>" />
 </p>
 </form>
 <hr />
 <form method="post" action="">
 <p class="submit">
 <input type="submit" name="aws-s3-backup"
value="<?php echo('Backup Database') ?>" />
 <input type="submit" name="aws-s3-restore"
value="<?php echo('Restore Database') ?>" />
 </p>
 </form>
 </div>
 <?php
}

Setting up the base framework is essential if the plugin is to work correctly.
So, double-check your work before proceeding.

Smashing eBook #12│WordPress Tutorials │ 174

DATABASE UPLOAD

Next is the main part of the plugin, its raison d’être: the function for backing
up the database to the S3 bucket.

/* Back up WordPress database to an Amazon S3 bucket */
function backup_to_AmazonS3()
{
 global $wpdb, $plugin_path;

 /* Backup file name */
 $backup_zip_file = 'aws-s3-database-backup.zip';

 /* Temporary directory and file name where the backup file
will be stored */
 $backup_file = $plugin_path . "/s3backup/aws-s3-database-
backup.sql";

 /* Complete path to the compressed backup file */
 $backup_compressed = $plugin_path . "/s3backup/" .
$backup_zip_file;

 $tables = $wpdb->get_col("SHOW TABLES LIKE '" . $wpdb-
>prefix . "%'");
 $result = shell_exec('mysqldump --single-transaction -h ' .
 DB_HOST . ' -u ' . DB_USER . ' --
password="' .
 DB_PASSWORD . '" ' .
 DB_NAME . ' ' . implode(' ',
$tables) . ' > ' .
 $backup_file);

 $backups[] = $backup_file;

 /* Create a ZIP file of the SQL backup */
 $zip = new PclZip($backup_compressed);
 $zip->create($backups);

 /* Connect to Amazon S3 to upload the ZIP */
 $s3 = new AmazonS3();
 $bucket = get_option('aws-s3-access-bucket');

Smashing eBook #12│WordPress Tutorials │ 175

 /* Check if a bucket name is specified */
 if(empty($bucket)) {
 showMessage("No Bucket specified!", true);
 return;
 }

 /* Set backup public options */
 $access_options = get_option('aws-s3-access-public');

 if($access_options) {
 $access = AmazonS3::ACL_PUBLIC;
 } else {
 $access = AmazonS3::ACL_PRIVATE;
 }

 /* Upload the database itself */
 $response = $s3->create_object($bucket, $backup_zip_file,
 array(
 'fileUpload' => $backup_compressed,
 'acl' => $access,
 'contentType' => 'application/zip',
 'encryption' => 'AES256',
 'storage' => AmazonS3::STORAGE_REDUCED,
 'headers' => array(// raw headers
 'Cache-Control' => 'max-age',
 'Content-Encoding' => 'application/zip',
 'Content-Language' => 'en-US',
 'Expires' => 'Thu, 01 Dec 1994 16:00:00
GMT',
)
));

 if($response->isOK()) {
 unlink($backup_compressed);
 unlink($backup_file);
 showMessage("Database successfully backed up to Amazon
S3.");
 } else {
 showMessage("Error connecting to Amazon S3", true);
 }
}

Smashing eBook #12│WordPress Tutorials │ 176

The code is self-explanatory, but some sections need a bit of explanation.
Because we want to back up the complete WordPress database, we need to
somehow get ahold of the MySQL dump file for the database. There are
multiple ways to do this: by using MySQL queries within WordPress to save
all tables and rows of the database, or by dropping down to the shell and
using mysqldump. We will use the second method. The code for the
database dump shown below uses the shell_exec function to run the
mysqldump command to grab the WordPress database dump. The dump is
further saved to the aws-s3-database-backup.sql file.

$tables = $wpdb->get_col("SHOW TABLES LIKE '" . $wpdb-
>prefix . "%'");
$result = shell_exec('mysqldump --single-transaction -h ' .
 DB_HOST . ' -u ' . DB_USER .
 ' --password="' . DB_PASSWORD . '"
' .
 DB_NAME . ' ' . implode(' ',
$tables) .
 ' > ' . $backup_file);

$backups[] = $backup_file;

The SQL dump will obviously be big on most installations, so we’ll need to
compress it before uploading it to S3 to conserve space and bandwidth.
We’ll use WordPress’ built-in ZIP functions for the task. The PclZip class is
stored in the /wp-admin/includes/class-pclzip.php file, which we
have included at the start of the plugin. The aws-s3-database-
backup.zip file is the final ZIP file that will be uploaded to the S3 bucket.
The following lines will create the required ZIP file.

/* Create a ZIP file of the SQL backup */
 $zip = new PclZip($backup_compressed);
 $zip->create($backups);

The PclZip constructor takes a file name as an input parameter; aws-s3-
database-backup.zip, in this case. And to the create method we pass an

Smashing eBook #12│WordPress Tutorials │ 177

array of files that we want to compress; we have only one file to compress,
aws-s3-database-backup.sql.

Now that we’ve taken care of the database, let’s move on to the security. As
mentioned in the introduction, objects stored on S3 can be set as private
(viewable only by the owner) or public (viewable by everyone). We set this
option using the following code.

/* Set backup public options */
 $access_options = get_option('aws-s3-access-public');

 if($access_options) {
 $access = AmazonS3::ACL_PUBLIC;
 } else {
 $access = AmazonS3::ACL_PRIVATE;
 }

We have listed only two options for access (AmazonS3::ACL_PUBLIC and
AmazonS3::ACL_PRIVATE), but there are a couple more, as listed below
and the details of which you can find in the Amazon SDK documentation.

• AmazonS3::ACL_PRIVATE

• AmazonS3::ACL_PUBLIC

• AmazonS3::ACL_OPEN

• AmazonS3::ACL_AUTH_READ

• AmazonS3::ACL_OWNER_READ

• AmazonS3::ACL_OWNER_FULL_CONTROL

Now on to the main code that does the actual work of uploading. This could
have been complex, but the CloudFusion SDK makes it easy. We use the
create_object method of the S3 class to perform the upload. We got a
short glimpse of the method in the last section.

Smashing eBook #12│WordPress Tutorials │ 178

/* Upload the database itself */
$response = $s3->create_object($bucket, $backup_zip_file,
array(
 'fileUpload' => $backup_compressed,
 'acl' => $access,
 'contentType' => 'application/zip',
 'encryption' => 'AES256',
 'storage' => AmazonS3::STORAGE_REDUCED,
 'headers' => array(// raw headers
 'Cache-Control' => 'max-age',
 'Content-Encoding' => 'application/zip',
 'Content-Language' => 'en-US',
 'Expires' => 'Thu, 01 Dec 1994 16:00:00 GMT',
)
));

Let’s go over each line in turn. But bear in mind that the method has quite a
many options, so refer to the original documentation itself.

• $backup_zip_file
The name of the object that will be created on S3.

• 'fileUpload' => $backup_compressed
The name of the file, whose data will be uploaded to the server. In our
case, aws-s3-database-backup.zip.

• 'acl' => $access
The access type for the object. In our case, either public or private.

• 'contentType' => 'application/zip'
The type of content that is being sent in the body. If a file is being
uploaded via fileUpload, as in our case, it will attempt to determine the
correct MIME type based on the file’s extension. The default value is
application/octet-stream.

• 'encryption' => 'AES256'
The algorithm to use for encrypting the object. (Allowed values:
AES256)

Smashing eBook #12│WordPress Tutorials │ 179

http://docs.amazonwebservices.com/AWSSDKforPHP/latest/#m=AmazonS3/create_object
http://docs.amazonwebservices.com/AWSSDKforPHP/latest/#m=AmazonS3/create_object

• 'storage' => AmazonS3::STORAGE_REDUCED
Specifies whether to use “standard” or “reduced redundancy” storage.
Allowed values are AmazonS3::STORAGE_STANDARD and
AmazonS3::STORAGE_REDUCED. The default value is
STORAGE_STANDARD.

• 'headers' => array(// raw headers
'Cache-Control' => 'max-age',
'Content-Encoding' => 'application/zip',
'Content-Language' => 'en-US',
'Expires' => 'Thu, 01 Dec 1994 16:00:00 GMT',
)
The standard HTTP headers to send along with the request. These are
optional.

Note that the plugin does not provide a function to create a bucket on
Amazon S3. You need use Amazon’s AWS Management Console or S3Fox
Organizer to create a bucket before uploading objects to it.

DATABASE RESTORE

Merely being able to back up data is insufficient. We also need to be able to
restore it when the need arises. In this section, we’ll lay out the code for
restoring the database from S3. When we say “restore,” keep in mind that
the database’s ZIP file from S3 will simply be downloaded to the specified
folder in our plugin directory. The actual database on our WordPress server
is not changed in any way; you will have to restore the database yourself
manually. We could have equipped our plugin to also auto-restore, but that
would have made the code a lot more complex.

Smashing eBook #12│WordPress Tutorials │ 180

Here is the complete code for the restore function:

/* Restore WordPress backup from an Amazon S3 bucket */
function restore_from_AmazonS3()
{
 global $plugin_path;

 /* Backup file name */
 $backup_zip_file = 'aws-s3-database-backup.zip';

 /* Complete path to the compressed backup file */
 $backup_compressed = $plugin_path . "/s3backup/" .
$backup_zip_file;

 $s3 = new AmazonS3();
 $bucket = get_option('aws-s3-access-bucket');

 if(empty($bucket)) {
 showMessage("No Bucket specified!", true);
 return;
 }

 $response = $s3->get_object($bucket, $backup_zip_file,
array(
 'fileDownload' => $backup_compressed
));

 if($response->isOK()) {
 showMessage("Database successfully restored from
Amazon S3.");
 } else {
 showMessage("Error connecting to Amazon S3", true);
 }

}

As you can see, the code for restoring is much simpler than the code for
uploading. The function uses the get_object method of the SDK, the
definition of which is as follows:

get_object ($bucket, $filename, [$opt = null])

Smashing eBook #12│WordPress Tutorials │ 181

The details of the method’s parameters are enumerated below:

• $bucket
The name of the bucket where the backup file is stored. The bucket’s
name is stored in our WordPress settings variable aws-s3-access-
bucket, which we retrieve using the get_option('aws-s3-
access-bucket') function.

• $backup_zip_file
The file name of the backup object. In our case, aws-s3-database-
backup.zip.

• 'fileDownload' => $backup_compressed
The file system location to download the file to, or an open file
resource. In our case, the s3backup directory in our plugin folder. It
must be a server-writable location.

At the end of the function, we check whether the download was successful
and inform the user.

In addition to the above functions, there are some miscellaneous support
functions. One is for displaying a message to the user:

/* Generic message display */
function showMessage($message, $errormsg = false) {
 if ($errormsg) {
 echo '<div id="message" class="error">';
 } else {
 echo '<div id="message" class="updated">';
 }

 echo "<p>$message</p></div>";
}

Smashing eBook #12│WordPress Tutorials │ 182

Another is to add a hook for the settings page to the admin section.

function add_settings_page() {
 add_options_page('Amazon S3 Backup', 'Amazon S3 Backup',8,
 's3-backup', 'draw_settings_page');
}

The button commands for backing up and restoring are handled by this
simple code:

/* Save or Restore Database backup */
if(isset($_POST['aws-s3-backup'])) {
 backup_to_AmazonS3();
} elseif(isset($_POST['aws-s3-restore'])) {
 restore_from_AmazonS3();
}

This rounds out our tutorial on creating a plugin to integrate Amazon S3 with
WordPress. Although we could have added more features to the plugin, the
functionality was kept bare to maintain focus on Amazon S3’s basics, rather
then on the calisthenics of plugin development.

In Conclusion
This has been a relatively long article, the aim of which was to acquaint you
with Amazon S3 and how to use it in your PHP applications. Together, we’ve
developed a WordPress plugin to back up our WordPress database to the
S3 cloud and to retrieve it when needed. To reiterate, S3 is a complex
service with many features and functions, which we have not covered here
due to space considerations. Perhaps in future articles we’ll elaborate on
the other features of S3 and add more features to the plugin we developed
here.

Smashing eBook #12│WordPress Tutorials │ 183

!e Authors

Elio Rivero
Elio Rivero is a web designer and developer who works daily with
WordPress. He runs I Love Colors where he shares tutorials about jQuery,
WordPress and blogs about typography, design and illustration. He also
sells WordPress plugins on CodeCanyon.

Kevin Leary
Kevin Leary is a WordPress Web Designer & Developer located in Boston,
Massachusetts. He specializes in customizing themes and plugins for
businesses.

Jeremy Desvaux de Marigny
Passionate web developer from Lyon. Jeremy likes to build sweet & strong
web apps, usually based on PHP. WordPress nerd, he loves jQuery, tweets
about web development, blogs at jdmweb, and works at NOE interactive.

Jonathan Wold
Jonathan Wold is the husband of a beautiful redhead named Joslyn and the
father of a baby boy named Jaiden. He works at Sabramedia, a web design
and development company that specializes in WordPress powered media
sites. He is also a core developer and evangelist for Newsroom, a paywall,
newspaper CMS, and accounting system built for the newspaper industry.

Smashing eBook #12│WordPress Tutorials │ 184

http://ilovecolors.com.ar/
http://ilovecolors.com.ar/
http://codecanyon.net/user/Elliot/portfolio
http://codecanyon.net/user/Elliot/portfolio
http://sabramedia.com/
http://sabramedia.com/
http://sabramedia.com/wordpress
http://sabramedia.com/wordpress
http://sabramedia.com/wordpress
http://sabramedia.com/wordpress
http://newsroom.sabramedia.com/
http://newsroom.sabramedia.com/
http://newsroom.sabramedia.com/paywall.html
http://newsroom.sabramedia.com/paywall.html
http://newsroom.sabramedia.com/cms.html
http://newsroom.sabramedia.com/cms.html

Justin Tadlock
I like to break WordPress in as many ways as possible. I even co-wrote a
book about it: Pro WP Plugin Development. Outside of that, I own and
run Theme Hybrid (a theme club) and co-own DevPress (a themes, plugins,
and tutorials community). I also play Halo sometimes.

Sameer Borate
Sameer Borate is a freelance web developer, working primarily in PHP and
MySQL. He blogs about his various interests and web topics at
www.codediesel.com. When away from blogging or writing code, he spends
his free time reading non-fiction books. He is of the staunch opinion that the
Semantic Web is the next frontier of the Internet and would like to make
some time to delve into its mysteries.

Siobhan McKeown
Siobhan McKeown is a writer at WPMU.org, one of the leading WordPress
news and tutorial sites around. She is also the founder of Words for WP, a
copywriting service just for the WordPress community. She is a big fan of
words, and of WordPress, which works out pretty well. You can find her on
twitter and occasionally hanging out on G+.

!ord Daniel Hedengren
Thord Daniel Hedengren is addicted to words, which is probably why he
keep writing books and never shuts up about writing. He is a contributor to
numerous magazines and sites, as well as the owner of the Odd Alice web

Smashing eBook #12│WordPress Tutorials │ 185

http://justintadlock.com/plugindevbook
http://justintadlock.com/plugindevbook
http://themehybrid.com/
http://themehybrid.com/
http://devpress.com/
http://devpress.com/
http://www.codediesel.com/
http://www.codediesel.com/
http://wpmu.org/
http://wpmu.org/
http://wordsforwp.com/
http://wordsforwp.com/
http://twitter.com/siobhanpmckeown
http://twitter.com/siobhanpmckeown
http://gplus.to/sio
http://gplus.to/sio
http://tdh.me/books/
http://tdh.me/books/
http://oddalice.com/
http://oddalice.com/

agency in Stockholm. You should follow this crazy Sweden on Twitter where
he mixes wisdom with nonsense and the occasional jab as @tdh.

Smashing eBook #12│WordPress Tutorials │ 186

http://twitter.com/tdh
http://twitter.com/tdh

